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The SARS-CoV-2 Hydra, a tiny monster from the 21st century: 
Thermodynamics of the BA.5.2 and BF.7 variants 
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A B S T R A C T   

SARS-CoV-2 resembles the ancient mythical creature Hydra. Just like with the Hydra, when one head is cut, it is 
followed by appearance of two more heads, suppression of one SARS-CoV-2 variant causes appearance of newer 
variants. Unlike Hydra that grows identical heads, newer SARS-CoV-2 variants are usually more infective, which 
can be observed as time evolution of the virus at hand, which occurs through acquisition of mutations during 
time. The appearance of new variants is followed by appearance of new COVID-19 pandemic waves. With the 
appearance of new pandemic waves and determining of sequences, in the scientific community and general 
public the question is always raised of whether the new variant will be more virulent and more pathogenic. The 
two variants characterized in this paper, BA.5.2 and BF.7, have caused a pandemic wave during the late 2022. 
This paper gives full chemical and thermodynamic characterization of the BA.5.2 and BF.7 variants of SARS-CoV- 
2. Having in mind that Gibbs energy of binding and biosynthesis represent the driving forces for the viral life 
cycle, based on the calculated thermodynamic properties we can conclude that the newer variants are more 
infective than earlier ones, but that their pathogenicity has not changed.   

1. Introduction 

“Hydra, that monster with a ring of heads with power to grow again” 
[Euripides, 2023]. The Hydra of Lerna is an epic monster from Greek 
mythology. It was mentioned for the first time by Hesiod in his poem 
Theogony, composed between 730 and 700 BC [Hesiod, 2023]. Hydra 
was said to be a gigantic water-snake-like monster with multiple heads 
[Britannica, 2023]. It was believed to live in the marshes of Lerna, near 
Árgos [Britannica, 2023]. Hydra has an ability of regeneration – when 
one head is cut off, two more grow to take its place [Euripides, 2023; 
Britannica, 2023]. Hydra, the monster of our imagination, has come to 
haunt us in the 21st century in the form of a virus. SARS-CoV-2 has 
multiple variants. Each variant brings a new pandemic wave. Every time 
a variant is suppressed, one or more variants appear to take its place. 

Living organisms represent open thermodynamic systems, which 
during interactions with their animate and inanimate surroundings 
change their thermodynamic parameters [Boltzmann, 1974; von Ber
talanffy, 1950, 1971; Balmer, 2010; Popovic, 2018a, 2018b; Prigogine 
and Wiame, 1946; Prigogine, 1977, 1947; Glansdorff and Prigogine, 
1971; Morowitz et al., 2000, 1988; Morowitz, 1995, 1992, 1976, 1968, 
1955; Schrödinger, 1944; Ozilgen and Sorgüven, 2017]. Even though 
they represent the simplest biological systems, viruses completely fit 

into von Bertalanffy’s theory of open systems in biology [von Berta
lanffy, 1950, 1971]. 

Viruses are obligate intracellular parasites, which hijack metabolism 
and resources of their host cells, and use their host cell to perform basic 
biological functions [Popovic and Minceva, 2020a, 2020b]. Until 2019, 
the empirical formula was known only for the poliovirus [Wimmer, 
2006; Molla et al., 1991]. Since the beginning of the COVID-19 
pandemic, there has been an intense development of bio
thermodynamics of viruses. The next virus to be chemically and ther
modynamically characterized was the Hu-1 variant of SARS-CoV-2 
[Popovic, 2022a]. During the COVID-19 pandemic, SARS-CoV-2 has 
mutated many times on the genes encoding the spike glycoprotein and 
other viral proteins. The consequence of mutations was development of 
new variants. Chemical and thermodynamic characterization of new 
virus variants has been reported in the literature [Popovic and Popovic, 
2022; Özilgen and Yilmaz, 2021; Yilmaz et al., 2020; Nadi and Özilgen, 
2021; Şimşek et al., 2021; Degueldre, 2021; Popovic, 2022a, 2022b, 
2022c, 2022d, 2022e, 2022f, 2022g, 2022h, 2022i, 2022j; Gale, 2022; 
Lucia, 2021, 2020a, 2020b; Kaniadakis et al., 2020; Popovic and Min
ceva, 2021a, 2020b; Istifli et al., 2022]. In that way, biothermodynamics 
has followed the reports on sequencing of nucleic acids and proteins of 
various variants. The atom counting method has been developed, which 
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determines empirical formulas of viruses, based on their genetic and 
protein sequences [Popovic, 2022k]. 

Thermodynamic analysis and calorimetry have for a long time been 
used in research on viruses. The calorimetric methods include differential 
scanning calorimetry (DSC), isothermal titration calorimetry (ITC) and 
reaction calorimetry (isothermal microcalorimetry) [Privalov, 2012; 
Sarge et al., 2014]. Differential scanning calorimetry (DSC) has been 
applied to measure energetics of virus capsid self-assembly and denatur
ation [Krell et al., 2005; Yang et al., 2017], virus particle structure [Bauer 
et al., 2015, 2013], thermal stability [Yang et al., 2017; Makarov et al., 
2013; Virudachalam et al., 1985a, 1985b], virus identification [Krell et al., 
2005], virus denaturation [Toinon et al., 2015 ; Brouillette et al., 1982], 
entry into host cell [Banerjee et al., 2010; Nebel et al., 1995], capsid 
self-assembly [Sturtevant et al., 1981; Stauffer, 1970] and vaccine devel
opment [Deschuyteneer et al., 2010; Wang et al., 2015]. 

Isothermal titration calorimetry (ITC) was also applied to study a 
wide range of phenomena related to viruses, such as virus adsorption 
and disassembly [Yu et al., 2015], influence on metabolism and cell 
cycle [Javorsky et al., 2022; Prins et al., 2010], apoptosis inhibition 
[Anasir et al., 2017; Aladag et al., 2014], virus structure and entry into 
host cells [Liu et al., 2014], nucleocapsid self-assembly [Maassen et al., 
2019], inactivation [Yang et al., 2020; Kawahara et al., 2018], immune 
response evasion [Gao et al., 2021], antiviral therapy development 
[Zhou et al., 2022; Noble et al., 2016; Sharma et al., 2016; Byrn et al., 
2015] and vaccine development [Vorobieva et al., 2014]. 

Reaction calorimetry (isothermal microcalorimetry) has been 
applied to study virus multiplication inside host cells [Sigg et al., 2022; 
Tkhilaishvili et al., 2018a; Guosheng et al., 2003; Morais et al., 2014], 
phage action against bacterial biofilms [Tkhilaishvili et al., 2020a, 
2020b, 2018a, 2018b, 2018c; Wang et al., 2020a, 2020b; Tkhilaishvili 
et al., 2018b], phage-bacteria interactions [Fanaei Pirlar et al., 2022; 
Wang et al., 2020c], phage transition from lytic into lysogenic cycles 
[Maskow et al., 2010], antiviral therapy [Shadrick et al., 2013; Tkhi
laishvili, 2022; Gelman et al., 2021], and influence on marine ecosystem 
metabolism [Djamali et al., 2012]. 

Working with SARS-CoV-2 requires a high biosafety level and few 
analytic and biothermodynamic laboratories fulfill such conditions. To 
overcome this obstacle, the atom counting method was developed 
[Popovic, 2022k], which proved itself useful in chemical and thermo
dynamic characterization of contagious viruses like SARS-CoV-2. During 
the last year, the atom counting method has proved itself useful in 
characterization of other viruses, including Ebola [Popovic, 2022j], 
Monkeypox [Popovic, 2022L], Herpes [Popovic, 2022m], HIV-1 
[Popovic, 2022n] and bacteriophages [Popovic, 2022q], as well as vi
roids [Popovic, 2023]. 

Change in thermodynamic properties represents the driving force for 
most processes in nature [Demirel, 2014; Balmer, 2010; Atkins and de 
Paula, 2011, 2014; Ozilgen and Sorgüven, 2017]. The viral life cycle 
consists of several processes, which have their biological, chemical and 
thermodynamic nature [Popovic, 2022i, 2022p, Ridgway et al., 2022]. 
Replication of viral nucleic acid represents a chemical reaction of 
polymerization of nucleotides driven by Gibbs energy of biosynthesis 
[Dodd et al., 2020; Johansson and Dixon, 2013]. Transcription repre
sents a polymerization reaction that produces mRNA [Pinheiro et al., 
2008]. Translation represents a chemical reaction of polymerization of 
amino acids into proteins [Popovic, 2022i; Lee et al., 2020]. Virus 
binding represents a chemical reaction similar to protein ligand inter
action, driven by Gibbs energy of binding [Gale, 2021, 2020, 2019, 
2018]. Self-assembly of viral components represents a physical process, 
also led by changes in thermodynamic properties [Katen and Zlotnick, 
2009; Maassen et al., 2019]. 

The goal of this paper is to perform a chemical and thermodynamic 
characterization of the BA.5.2 and BF.7 variants of SARS-CoV-2, to es
timate their infectivity and pathogenicity, which depend on kinetic (e.g. 
biosynthesis rate and binding rate) and thermodynamic properties (e.g. 
enthalpy, entropy and Gibbs energy). 

2. Methods 

2.1. Data sources 

The genetic sequences of the BA.5.2 and BF.7 variants of SARS-CoV-2 
were taken from GISAID, the global data science initiative [Khare et al., 
2021; Elbe and Buckland-Merrett, 2017; Shu and McCauley, 2017]. The 
genetic sequence of the BA.5.2 isolate from Australia is labeled 
hCoV-19/Australia/NSW-ICPMR-40038/2022. It can be found under 
the accession ID: EPI_ISL_16342181. It was isolated in Sydney on 
December 18, 2022. It was sequenced using Illumina technology. The 
genetic sequence of the BA.5.2 isolate from Japan is labeled 
hCoV-19/Japan/PG-416497/2022. It can be found under the accession 
ID: EPI_ISL_16374653. It was isolated in Fukuoka on December 3, 2022. 
It was sequenced using Illumina MiSeq technology. The genetic 
sequence of the BA.5.2 isolate from USA is labeled 
hCoV-19/USA/NH-CDC-LC0969162/2022. It can be found under the 
accession ID: EPI_ISL_16382809. It was isolated in New Hampshire on 
December 23, 2022. It was sequenced using PacBio Sequel II technology. 
The genetic sequence of the BF.7 isolate from China is labeled 
hCoV-19/Beijing/CPL-12-64/2022. It can be found under the accession 
ID: EPI_ISL_16348517. It was isolated in Beijing on December 19, 2022. 
It was sequenced using Illumina NextSeq technology. The genetic 
sequence of the BF.7 isolate from Greece is labeled 
hCoV-19/Greece/345194/2022. It can be found under the accession ID: 
EPI_ISL_16383259. It was isolated in Attica on November 17, 2022. It 
was sequenced using Illumina NovaSeq 6000 technology. The genetic 
sequence of the BF.7 isolate from Serbia is labeled 
hCoV-19/Serbia/K563312-11/2022. It can be found under the accession 
ID: EPI_ISL_16317088. It was isolated in Belgrade on November 21, 
2022. It was sequenced using MGI-DNBSEQ technology. Therefore, the 
findings of this study are based on metadata associated with 6 sequences 
available on GISAID up to January 7, 2023, and accessible at 
https://doi.org/10.55876/gis8.230107ef 

The sequence of the nucleocapsid phosphoprotein of SARS-CoV-2 
was obtained from the NCBI database [Sayers et al., 2022; National 
Center for Biotechnology Information, 2022], under the accession ID: 
UKQ14424.1. The number of copies of the nucleocapsid phosphoprotein 
in virus particle was taken from [Neuman and Buchmeier, 2016; Neu
man et al., 2011; Neuman et al., 2006]. In a SARS-CoV-2 particle, there 
are 2368 copies of the nucleocapsid phosphoprotein [Neuman and 
Buchmeier, 2016; Neuman et al., 2011; Neuman et al., 2006]. 

The dissociation equilibrium constant, Kd, of the spike glycoprotein 
of BF.7 variant of SARS-CoV-2 to the human ACE2 receptor was taken 
from [Wang et al., 2022]. Its value is Kd = 0.4 nM [Wang et al., 2022]. It 
was measured using surface plasmon resonance at 25◦C [Wang et al., 
2022]. 

2.2. Empirical formulas and biosynthesis reactions 

The genetic and protein sequences were used to find empirical for
mulas of nucleocapsids of the BA.5.2 and BF.7 variants of SARS-CoV-2. 
This was done using the atom counting method [Popovic, 2022k]. The 
atom counting method is implemented using a computer program 
[Popovic, 2022k]. The input are genetic and protein sequences of the 
virus of interest, as well as the number of copies of proteins in the virus 
particle and the virus particle size [Popovic, 2022k]. The program goes 
along the nucleic acid and protein sequences and adds atoms coming 
from each residue in the sequence, to find the number of atoms 
contributed by that macromolecule to the virus particle [Popovic, 
2022k]. The contributions of viral proteins are multiplied by their copy 
numbers, since proteins are present in multiple copies in virus particles 
[Popovic, 2022k]. The output of the program is elemental composition 
of virus particles, in the form of empirical formulas, and molar masses of 
virus particles [Popovic, 2022k]. The advantage of the atom counting 
method is that it can provide the empirical formulas of virus particles, 
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based on widely available data on genetic and protein sequences 
[Popovic, 2022k]. The atom counting method was shown to give results 
in good agreement with experimental results [Popovic, 2022k]. 

The empirical formulas of virus particles were used to construct 
biosynthesis reactions, summarizing conversion of nutrients into new 
live matter [von Stockar, 2013a, 2013b; Battley, 1998]. The biosyn
thesis reaction for virus particles has the general form 

(Amino acid) + O2 + HPO2−
4 + HCO−

3 →(Bio) + SO2−
4 + H2O + H2CO3

(1)  

where (Bio) represents new live matter, described by an empirical for
mula given by the atom counting method [Popovic, 2022b, 2022c, 
2022f]. (Amino acid) represents a mixture of amino acids with the 
empirical formula CH1.798O0.4831N0.2247S0.022472 (expressed per mole of 
carbon), representing the source of energy, carbon, nitrogen and sulfur 
[Popovic, 2022b, 2022c, 2022f]. O2 is the electron acceptor [Popovic, 
2022b, 2022c, 2022f]. HPO4

2− is the source of phosphorus [Popovic, 
2022b, 2022c, 2022f]. HCO3

− is a part of the bicarbonate buffer that 
takes excess H+ ions that are generated during biosynthesis [Popovic, 
2022b, 2022c, 2022f]. SO4

2− is an additional metabolic product that 
takes excess sulfur atoms [Popovic, 2022b, 2022c, 2022f]. H2CO3 takes 
the oxidized carbon atoms and is also a part of the bicarbonate buffer 
[Popovic, 2022b, 2022c, 2022f]. 

2.3. Thermodynamic properties of live matter and biosynthesis 

Empirical formulas of virus nucleocapsids were used to find standard 
thermodynamic properties of their live matter, using predictive bio
thermodynamic models: the Patel-Erickson and Battley equations [Patel 
and Erickson, 1981; Battley, 1999, 1998, 1992]. The Patel-Erickson 
equation was used to find enthalpy of live matter, based on its 
elemental composition. The Patel-Erickson equation gives standard 
enthalpy of combustion, ΔCH⁰, of live matter 

ΔCH0(bio) = − 111.14
kJ

C − mol
E (2)  

where E is number of electrons transferred to oxygen during combustion 
[Patel and Erickson, 1981; Battley, 1998, 1992]. E can be calculated 
from the empirical formula of live matte 

E = 4nC + nH − 2nO − 0 nN + 5nP + 6nS (3)  

where nC, nH, nO, nN, nP and nS represent the numbers of C, H, O, N, P and 
S atoms in the live matter empirical formula, respectively [Patel and 
Erickson, 1981; Battley, 1998, 1992]. Once calculated using the 
Patel-Erickson equation, ΔCH⁰ can be converted into standard enthalpy 
of formation, ΔfH⁰, of live matter. ΔCH⁰ is the enthalpy change of the 
reaction of complete combustion of live matter.  

This means that ΔCH⁰ can be used to find ΔfH⁰ of live matter using the 
equation [Popovic, 2022b, 2022c, 2022f; Atkins and de Paula, 2011, 
2014] 

f H0(bio) = nCΔf H0(CO2) +
nH

2
Δf H0(H2O) +

nP

4
Δf H0(P4O10)

+ nS Δf H0(SO3) − ΔCH0 (5) 

The Battley equation gives standard molar entropy of live matter, 
S⁰m, based on its empirical formula 

S0
m(bio) = 0.187

∑

J

S0
m(J)
aJ

nJ (6)  

where nJ is the number of atoms of element J in the empirical formula of 
live matter [Battley, 1999; Battley and Stone, 2000]. S⁰m and aJ are 
standard molar entropy and number of atoms per formula unit of 
element J in its standard state elemental form [Battley, 1999; Battley 
and Stone, 2000]. The Battley equation can be modified to give standard 
entropy of formation, ΔfS⁰, of live matter [Battley, 1999; Battley and 
Stone, 2000] 

S0
m(bio) = − 0.813

∑

J

S0
m(J)
aJ

nJ (7)  

Finally, ΔfH⁰ and ΔfS⁰ are combined to give standard Gibbs energy of 
formation of live matter, ΔfG⁰. 

Δf G0(bio) = Δf H0(bio) − TΔf S0(bio) (8) 

Once live matter is characterized by finding its ΔfH⁰, S⁰m and ΔfG⁰, 
these properties can be combined with biosynthesis reactions to find 
standard thermodynamic properties of biosynthesis. Standard thermo
dynamic properties of biosynthesis include standard enthalpy of 
biosynthesis, ΔbsH⁰, standard entropy of biosynthesis, ΔbsS⁰, and stan
dard Gibbs energy of biosynthesis, ΔbsG⁰. These properties are found by 
applying the Hess’s law to biosynthesis reactions 

ΔbsH0 =
∑

products
ν Δf H0 −

∑

reactants
ν Δf H0 (9)  

ΔbsS0 =
∑

products
ν So

m −
∑

reactants
ν So

m (10)  

ΔbsG0 =
∑

products
ν Δf G0 −

∑

reactants
νΔf G0 (11)  

where ν represents a stoichiometric coefficient [Popovic, 2022b, 2022c, 
2022f; Atkins and de Paula, 2011, 2014; von Stockar, 2013a, 2013b; 
Battley, 1998]. The most important of these three properties is standard 
Gibbs energy of biosynthesis, which represents the thermodynamic 
driving force for growth of all organisms [von Stockar, 2013a, 2013b; 
von Stockar and Liu, 1999], including viruses [Popovic, 2022b, 2022c, 
2022f, 2022i]. 

2.4. Thermodynamic properties of antigen-receptor binding 

In order to multiply inside the cytoplasm, a virus must first enter its 
host cell. The first step in this process is binding of the virus antigen to 
the host cell receptor. The antigen of SARS-CoV-2 is the spike glyco
protein trimer (SGP) [Duan et al., 2020], while the host cell receptor is 
angiotensin-converting enzyme 2 (ACE2) [Scialo et al., 2020]. The 

process of antigen-receptor binding is, in its essence, a chemical reac
tion, similar to protein-ligand interactions [Du et al., 2016; Popovic and 
Popovic, 2022]. Thus, the binding of SGP to ACE2 can be described 
through the chemical reaction 

(An) + (Re) = (An − Re)

where (An) represents the virus antigen (SGP in the case of SARS-CoV- 
2), (Re) represents the host cell receptor (ACE2 for SARS-CoV-2), 
while (An-Re) represents the antigen-receptor complex [Du et al., 

CnCHnHOnONnNPnPSnS + (nC + 1 / 4nH + 11 / 4nP + 11 / 2nS − 1 / 2nO)O2→nCCO2 + 1/2nHH2O + 1/2nNN2 + 1/4nPP4O10 + nSSO3 (4)   
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2016; Popovic and Popovic, 2022]. 
Like for all other chemical reactions, laws of chemical thermody

namics apply and the process of antigen-receptor binding can be 
described through several thermodynamic parameters. The dissociation 
equilibrium constant, Kd, is defined as 

Kd =
[An][Re]
[An − Re]

(12)  

where [An] is the concentration of the virus antigen, [Re] the concen
tration of the host receptor and [An-Re] the concentration of the antigen- 
receptor complex [Du et al., 2016; Popovic and Popovic, 2022]. The 
reciprocal of Kd is the binding equilibrium constant, KB, [Du et al., 2016; 
Popovic and Popovic, 2022] 

KB =
1

Kd
(13) 

The binding equilibrium constant can be used to find standard Gibbs 
energy of binding, ΔBG⁰, through the equation 

ΔBG0 = − RTlnKB (14)  

Where T is temperature and R is the universal gas constant [Du et al., 
2016; Popovic and Popovic, 2022]. 

2.5. Uncertainties 

The Patel-Erickson equation gives ΔCH⁰ values within 5.36 % accu
racy [Popovic, 2019]. The uncertainty in the S⁰m values found through 
the Battley equation is 19.7 % or less [Battley, 1999a]. The uncertainties 
in ΔCH⁰ and S⁰m values were used to find uncertainties in the final results 
for thermodynamic properties of live matter (ΔfH⁰ and ΔfG⁰) and ther
modynamic properties of biosynthesis (ΔbsH⁰, ΔbsS⁰ and ΔbsG⁰), through 
classical error propagation. 

3. Results 

Based on the dissociation equilibrium constant reported in the litera
ture [Wang et al., 2022], standard Gibbs energy of binding of the BF.7 
variant of SARS-CoV-2 was found to be -53.64 kJ/mol, at 25◦C. 

Based on genetic and protein sequences, elemental composition was 
determined for nucleocapsids of the BA.5.2 and BF.7 variants of SARS-CoV-2. 

It is reported in the form of empirical formulas, which are given in Table 1, 
together with their molar masses. The empirical formula of the BA.5.2 
nucleocapsid isolated in Australia is CH1.573784O0.342390N0.312321P0.005956 
S0.003361, with a molar mass of 23.7419 g/mol. The molar mass of the entire 
nucleocapsid of the BA.5.2 sample from Australia is 117.0958 MDa. The 
empirical formula of the BA.5.2 nucleocapsid isolated in Japan is 
CH1.573557O0.342676N0.312372P0.006022S0.003359, with a molar mass of 23.7489 
g/mol. The molar mass of the entire nucleocapsid of the BA.5.2 sample from 
Japan is 117.2088 MDa. The empirical formula of the BA.5.2 nucleocapsid 
isolated in USA is CH1.573566O0.342668N0.312369P0.00602S0.003359, with a molar 
mass of 23.7487 g/mol. The molar mass of the entire nucleocapsid of the 
BA.5.2 sample from USA is 117.2050 MDa. The empirical formula of the BF.7 
nucleocapsid isolated in China is CH1.573531O0.342715N0.312374P0.006031 
S0.003358, with a molar mass of 23.7498 g/mol. The molar mass of the entire 
nucleocapsid of the BF.7 sample from China is 117.2227 MDa. The empirical 
formula of the BF.7 nucleocapsid isolated in Greece is CH1.573511 
O0.342740N0.312379P0.006036S0.003358, with a molar mass of 23.7504 g/mol. The 
molar mass of the entire nucleocapsid of the BF.7 sample from Greece is 
117.2326 MDa. The empirical formula of the BF.7 nucleocapsid isolated in 
Serbia is CH1.573528O0.342718N0.312375P0.006031S0.003358, with a molar mass of 
23.7499 g/mol. The molar mass of the entire nucleocapsid of the BF.7 sample 
from Serbia is 117.2241 MDa. Based on the empirical formulas, biosynthesis 
reactions were formulated and reported in Table 2. 

Table 3 gives standard thermodynamic properties of live matter of 
nucleocapsids of the BA.5.2 and BF.7 variants of SARS-CoV-2. These 
include standard enthalpy of formation, ΔfH⁰, standard molar entropy, 
S⁰m, and standard Gibbs energy of formation, ΔfG⁰. For the nucleocapsid 
of the BA.5.2 isolate from Australia, standard enthalpy of formation is 
-75.32 kJ/C-mol, standard molar entropy is 32.49 J/C-mol K, and 
standard Gibbs energy of formation is -33.21 kJ/C-mol. For the nucle
ocapsid of the BA.5.2 isolate from Japan, standard enthalpy of formation 
is -75.39 kJ/C-mol, standard molar entropy is 32.49 J/C-mol K, and 
standard Gibbs energy of formation is -33.27 kJ/C-mol. For the nucle
ocapsid of the BA.5.2 isolate from USA, standard enthalpy of formation 
is -75.39 kJ/C-mol, standard molar entropy is 32.49 J/C-mol K, and 
standard Gibbs energy of formation is -33.27 kJ/C-mol. For the nucle
ocapsid of the BF.7 isolate from China, standard enthalpy of formation is 
-75.40 kJ/C-mol, standard molar entropy is 32.49 J/C-mol K, and 
standard Gibbs energy of formation is -33.28 kJ/C-mol. For the nucle
ocapsid of the BF.7 isolate from Greece, standard enthalpy of formation 
is -75.41 kJ/C-mol, standard molar entropy is 32.49 J/C-mol K, and 

Table 1 
Empirical formulas of nucleocapsids of BA.5.2 and BF.7 variants of SARS-CoV-2 isolated in various countries. The empirical formula of live matter has the general form 
CnCHnHOnONnNPnPSnS. In addition, molar masses were reported for the empirical formulas, Mr, and for entire nucleocapsids, Mr(nc).  

Variant C H O N P S Mr (g/mol) Mr(nc) (MDa) 

BA.5.2 nucleocapsid - Australia 1 1.573784 0.342390 0.312321 0.005956 0.003361 23.7419 117.0958 
BA.5.2 nucleocapsid - Japan 1 1.573557 0.342676 0.312372 0.006022 0.003359 23.7489 117.2088 
BA.5.2 nucleocapsid - USA 1 1.573566 0.342668 0.312369 0.00602 0.003359 23.7487 117.2050 
BF.7 nucleocapsid - China 1 1.573531 0.342715 0.312374 0.006031 0.003358 23.7498 117.2227 
BF.7 nucleocapsid - Greece 1 1.573511 0.342740 0.312379 0.006036 0.003358 23.7504 117.2326 
BF.7 nucleocapsid - Serbia 1 1.573528 0.342718 0.312375 0.006031 0.003358 23.7499 117.2241  

Table 2 
Biosynthesis reactions for the nucleocapsids of the BA.5.2 and BF.7 variants of SARS-CoV-2. The general biosynthesis reaction has the form: (Amino acids) + O2 +

HPO4
2−

+ HCO3
− → (Bio) + SO4

2−
+ H2O + H2CO3, where (Bio) denotes the empirical formula of live matter from Table 1. The stoichiometric coefficients for the 

biosynthesis reactions are given in this table.  

Variant Reactants → Products 

Amino acid O2 HPO4
2¡ HCO3

¡ Bio SO4
2¡ H2O H2CO3 

BA.5.2 nucleocapsid - Australia 1.3898 0.4908 0.0060 0.0438 → 1 0.0279 0.0536 0.4337 
BA.5.2 nucleocapsid - Japan 1.3901 0.4912 0.0060 0.0437 → 1 0.0279 0.0538 0.4338 
BA.5.2 nucleocapsid - USA 1.3900 0.4912 0.0060 0.0437 → 1 0.0279 0.0538 0.4338 
BF.7 nucleocapsid - China 1.3901 0.4913 0.0060 0.0437 → 1 0.0279 0.0538 0.4338 
BF.7 nucleocapsid - Greece 1.3901 0.4913 0.0060 0.0437 → 1 0.0279 0.0538 0.4338 
BF.7 nucleocapsid - Serbia 1.3901 0.4913 0.0060 0.0437 → 1 0.0279 0.0538 0.4338  
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standard Gibbs energy of formation is -33.29 kJ/C-mol. For the nucle
ocapsid of the BF.7 isolate from Serbia, standard enthalpy of formation 
is -75.40 kJ/C-mol, standard molar entropy is 32.49 J/C-mol K, and 
standard Gibbs energy of formation is -33.28 kJ/C-mol. 

Table 4 gives standard thermodynamic properties of biosynthesis of 
nucleocapsids of the BA.5.2 and BF.7 variants of SARS-CoV-2. These 
include standard enthalpy of biosynthesis, ΔbsH⁰, standard entropy of 
biosynthesis, ΔbsS⁰, and standard Gibbs energy of biosynthesis, ΔbsG⁰. 
For the nucleocapsid of the BA.5.2 isolate from Australia, standard 
enthalpy of biosynthesis is -232.14 kJ/C-mol, standard entropy of 
biosynthesis is -37.29 J/C-mol K, and standard Gibbs energy of 
biosynthesis is -221.06 kJ/C-mol. For the nucleocapsid of the BA.5.2 
isolate from Japan, standard enthalpy of biosynthesis is -232.32 kJ/C- 
mol, standard entropy of biosynthesis is -37.34 J/C-mol K, and stan
dard Gibbs energy of biosynthesis is -221.23 kJ/C-mol. For the nucleo
capsid of the BA.5.2 isolate from USA, standard enthalpy of biosynthesis 
is -232.31 kJ/C-mol, standard entropy of biosynthesis is -37.34 J/C-mol 
K, and standard Gibbs energy of biosynthesis is -221.22 kJ/C-mol. For 
the nucleocapsid of the BF.7 isolate from China, standard enthalpy of 
biosynthesis is -232.33 kJ/C-mol, standard entropy of biosynthesis is 
-37.34 J/C-mol K, and standard Gibbs energy of biosynthesis is -221.24 
kJ/C-mol. For the nucleocapsid of the BF.7 isolate from Greece, standard 
enthalpy of biosynthesis is -232.35 kJ/C-mol, standard entropy of 
biosynthesis is -37.35 J/C-mol K, and standard Gibbs energy of 
biosynthesis is -221.25 kJ/C-mol. For the nucleocapsid of the BF.7 
isolate from Serbia, standard enthalpy of biosynthesis is -232.33 kJ/C- 
mol, standard entropy of biosynthesis is -37.34 J/C-mol K, and stan
dard Gibbs energy of biosynthesis is -221.24 kJ/C-mol. 

4. Discussion 

The story about SARS-CoV-2 is reminiscent of the ancient legend of 
the Hydra of Lerna, a mythical creature that possessed many heads. Just 
like the Hydra, SARS-CoV-2 has many poisonous heads (variants). Every 
time humanity cuts off one head, one variant that has caused a pandemic 
wave, in its place appears a new one. Unfortunately, Heracles has not yet 
appeared on the scene. Thus, we need a modern Heracles in form of a 
vaccine. Starting from 2019, several dozen variants of SARS-CoV-2 
appeared, some of which have caused pandemic waves. Globally, as of 
5:09pm CET, 4 January 2023, there have been 655,689,115 confirmed 
cases of COVID-19, including 6,671,624 deaths, reported to WHO 2022. 
These data make SARS-CoV-2 a modern equivalent of the Hydra of Lerna 
and Medusa Gorgo, the ancient monsters. 

The research on SARS-CoV-2 was started in 2020, with a chemical 
and thermodynamic characterization of the Hu-1 variant (wild type) 
[Popovic and Minceva, 2020b]. SARS-CoV-2 has since then mutated 
several dozen times. In that way, several dozen major variants of 
SARS-CoV-2 virus appeared, some of which caused pandemic waves. 
Chemical and thermodynamic characterization of more important 
known variants of SARS-CoV-2 has been made in the literature [Popovic 
and Popovic, 2022; Özilgen and Yilmaz, 2021; Yilmaz et al., 2020; Nadi 
and Özilgen, 2021; Şimşek et al., 2021; Degueldre, 2021; Popovic, 
2022a, 2022b, 2022c, 2022d, 2022e, 2022f, 2022g, 2022h, 2022i, 
2022j; Gale, 2022; Lucia, 2021, 2020a, 2020b; Kaniadakis et al., 2020; 
Popovic and Minceva, 2021a, 2020b]. Thus, obviously, great efforts 
have been made by researchers in the field of biothermodynamics to 
reveal the thermodynamic background of SARS-CoV-2 particles, their 
life cycle, as well as interactions performed with various host tissues and 
other viruses. 

Virus-host interactions occur at the host cell membrane and in its 
cytoplasm [Popovic, 2022b, 2022i]. Both interactions represent chem
ical processes. The interaction at the membrane is similar to 
protein-ligand interactions [Popovic and Popovic, 2022; Du et al., 
2016]. The interaction in the cytoplasm represents a polymerization 
reaction of nucleotides and amino acids into nucleic acids and proteins, 
respectively [Pinheiro et al., 2008; Lee et al., 2020; Dodd et al., 2020; 
Johansson and Dixon, 2013]. These reactions are competitive. The 
competition is performed between the virus and its host cell. The driving 
force for the antigen-receptor binding at the membrane and the poly
merization of nucleotides into nucleic acids and synthesis of proteins is 
Gibbs energy [von Stockar, 2013a, 2013b; von Stockar and Liu, 1999; 
Demirel, 2014, Balmer, 2010; Berg et al., 2002]. Mutations of 
SARS-CoV-2 that appeared during time have led to change in empirical 
formula of new variants [Popovic, 2022i]. Changes in empirical formula 
have led to change in thermodynamic properties of binding and 
biosynthesis [Popovic, 2022f, 2022g, 2022i]. Changes in thermody
namic properties caused changes in kinetic parameters, including 
antigen-receptor binding rate and rate of biosynthesis of viral compo
nents, according to the phenomenological equations [Popovic, 2022f, 
2022g, 2022i]. Changes in the kinetics have led to changes in infectivity 
and pathogenicity [Popovic, 2022e, 2022i]. 

Every time a new variant appears, a question is raised about its 
infectivity and pathogenicity. Thus, with appearance of new BA.5.2 and 
BF.7 variants, the question was raised of whether they will be able to 
cause a new pandemic wave. The new variants compete with the old 
variants, if they appear at the same time in the same place. In that 

Table 3 
Standard thermodynamic properties of live matter of nucleocapsids of the BA.5.2 and BF.7 variants of SARS-CoV-2. This table gives data on standard enthalpies of 
formation, ΔfH⁰, standard molar entropies, S⁰m, and standard Gibbs energies of formation, ΔfG⁰.  

Variant ΔfH⁰⁰ (kJ/C-mol)  S⁰⁰m (J/C-mol K)  ΔfG⁰⁰ (kJ/C-mol) 

BA.5.2 nucleocapsid - Australia -75.32 ± 29.42  32.49 ± 6.40  -33.21 ± 31.33 
BA.5.2 nucleocapsid - Japan -75.39 ± 29.42  32.49 ± 6.40  -33.27 ± 31.33 
BA.5.2 nucleocapsid - USA -75.39 ± 29.42  32.49 ± 6.40  -33.27 ± 31.33 
BF.7 nucleocapsid - China -75.40 ± 29.42  32.49 ± 6.40  -33.28 ± 31.33 
BF.7 nucleocapsid - Greece -75.41 ± 29.42  32.49 ± 6.40  -33.29 ± 31.33 
BF.7 nucleocapsid - Serbia -75.40 ± 29.42  32.49 ± 6.40  -33.28 ± 31.33  

Table 4 
Standard thermodynamic properties of biosynthesis of nucleocapsids of the BA.5.2 and BF.7 variants of SARS-CoV-2. This table gives data on standard enthalpies of 
biosynthesis, ΔbsH⁰, standard entropies of biosynthesis, ΔbsS⁰, and standard Gibbs energies of biosynthesis, ΔbsG⁰.  

Variant ΔbsH⁰⁰ (kJ/C-mol)  ΔbsS⁰⁰ (J/C-mol K)  ΔbsG⁰⁰ (kJ/C-mol) 

BA.5.2 nucleocapsid - Australia -232.14 ± 41.72  -37.29 ± 9.62  -221.06 ± 44.59 
BA.5.2 nucleocapsid - Japan -232.32 ± 41.72  -37.34 ± 9.62  -221.23 ± 44.59 
BA.5.2 nucleocapsid - USA -232.31 ± 41.72  -37.34 ± 9.62  -221.22 ± 44.59 
BF.7 nucleocapsid - China -232.33 ± 41.72  -37.34 ± 9.62  -221.24 ± 44.58 
BF.7 nucleocapsid - Greece -232.35 ± 41.72  -37.35 ± 9.62  -221.25 ± 44.58 
BF.7 nucleocapsid - Serbia -232.33 ± 41.72  -37.34 ± 9.62  -221.24 ± 44.58  
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competition, one variant will win and suppress and weaker one. To 
predict the outcome of the competition, it is necessary to know the Gibbs 
energy of binding and Gibbs energy of biosynthesis. In this paper, for the 
first time, standard Gibbs energy of binding was determined for the BF.7 
variant. It is -53.64 kJ/C-mol, at 25◦C. Fig. 1 shows Gibbs energies of 
binding of various variants of SARS-CoV-2. From Fig. 1, it is possible to 
see the trend of evolution of SARS-CoV-2 towards more negative Gibbs 
energy of binding. More negative Gibbs energy of binding leads to 
greater antigen-receptor binding rate, which in turn leads to increased 
infectivity [Popovic, 2022g]. 

Fig. 2 shows Gibbs energies of biosynthesis through evolution of 
SARS-CoV-2 variants from Hu-1 to Omicron BA.5.2 and BF.7. All the 
Omicron variants are characterized by very similar Gibbs energies of 
biosynthesis. Gibbs energies of biosynthesis of all Omicron variants are 

slightly less negative than that of the Hu-1 variant. According to the 
phenomenological equations, this indicates a slightly slower multipli
cation of new variants compared to Hu-1. The slower multiplication 
leads to lesser range of damage to host tissues. This coincides with the 
fact that the number of more severe cases in any of the Omicron variants 
is lower than that of Hu-1. From this we can conclude that during evo
lution, mutations in the part of the SARS-CoV-2 genome that encodes 
proteins other than the spike glycoprotein have led to a decrease in 
pathogenicity. Indeed, from the evolutionary perspective, the favored 
mutations are those that lead to increase in infectivity and maintenance 
or slight decrease in pathogenicity [Popovic, 2022e]. Thus, in the wave 
that is currently hitting China and is dominated by the BF.7 variant, it is 
possible to expect an increased number of newly infected cases, due to 
an increase in infectivity, but without an increase in the number of 

Fig. 1. Gibbs energies of binding through evolution of SARS-CoV-2. This graph shows standard Gibbs energies of binding, ΔBG⁰, of SARS-CoV-2 variants during their 
evolution. The graph starts from the Hu-1 variant (Wild type) that appeared in late 2019 and ends with the newest BF.7 variant. The blue dots represent Gibbs 
energies of binding of the SARS-CoV-2 variants. The blue dashed line represents the direction of evolution of the ΔBG⁰ values. 

Fig. 2. Gibbs energy of biosynthesis through evolution of SARS-CoV-2. This graph shows standard Gibbs energies of biosynthesis, ΔbsG⁰, of SARS-CoV-2 variants 
during their evolution. The graph starts from the Hu-1 variant (Wild type) that appeared in late 2019 and ends with the newest BA.5.2 and BF.7 variants. The orange 
dots represent Gibbs energies of binding of the SARS-CoV-2 variants. The orange dashed line represents the direction of evolution of the ΔbsG⁰ values. 
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severe cases, having in mind that pathogenicity has not significantly 
changed compared to the earlier variants. However, it is obvious that 
due to the significant difference in Gibbs energy of binding, BF.7 should 
be able to suppress other Omicron variants that are in circulation. 

5. Conclusions 

Gibbs energy of antigen-receptor binding of Omicron BF.7 is more 
negative than that of the other variants. Thus, the rate of antigen- 
receptor binding of Omicron BF.7 is greater than that of other variants 
present in the population. This leads to an increased infectivity of BF.7 
and probable domination in the next wave of the COVID-19 pandemic. 

Gibbs energy of biosynthesis of BA.5.2 and BF.7 is not significantly 
different than the Gibbs energy of biosynthesis of other Omicron vari
ants. The rate of biosynthesis of BF.7 and BA.5.2 is approximately equal 
to the biosynthesis rate of other Omicron variants. The pathogenicity of 
BF.7 and BA.5.2 variants should not be greater than those of other 
Omicron variants. 
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