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Abstract 19 

Background: By the end of 2022, new variants of SARS-CoV-2, such as BQ.1.1.10, 20 

BA.4.6.3, XBB, and CH.1.1, emerged with higher fitness than BA.5.  21 

Methods: The file (spikeprot0304), which contains spike protein sequences, isolates 22 

collected before March, 4, 2023, was downloaded from Global Initiative on Sharing 23 

All Influenza Data (GISAID). A total of 188 different spike protein sequences were 24 

chosen, of which their isolates were collected from December 2022 to February 2023. 25 

These sequences did not contain undetermined amino acid X, and each spike protein 26 

sequence had at least 100 identical isolate sequences in GISAID. Phylogenetic trees 27 

were reconstructed using IQ-TREE and MrBayes softwares. A median-join network 28 

was reconstructed using PopART software. Selection analyses were conducted using 29 

site model of PAML software.  30 

Results: The phylogenetic tree of the spike DNA sequences revealed that the majority 31 

of variants belonged to three major lineages: BA.2 (BA.1.1.529.2), BA.5 32 

(BA.1.1.529.5), and XBB. The median network showed that these lineages had at 33 

least six major diversifying centers. The spike DNA sequences of these diversifying 34 

centers had the representative accession IDs (EPI_ISL_) of 16040256 (BN.1.2), 35 

15970311 (BA.5), 16028739 (BA.5.11), 16028774 (BQ.1), 16027638 (BQ.1.1.23), 36 

and 16044705 (XBB.1.5). Selection analyses revealed 26 amino-acid sites under 37 
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positive selection. These sites included L5, V83, W152, G181, N185, V213, H245, 38 

Y248, D253, S255, S256, G257, R346, R408, K444, V445, G446, N450, L452, N460, 39 

F486, Q613, Q675, T883, P1162, and V1264. 40 

Conclusion: The spike proteins of SARS-CoV-2 from December 2022 to February 41 

2023 were characterized by a swarm of variants that were evolved from three major 42 

lineages: BA.2 (BA.1.1.529.2), BA.5 (BA.1.1.529.5), and XBB. These lineages had at 43 

least six diversifying centers. Selection analysis identified 26 amino acid sites were 44 

under positive selection. Continued surveillance and research are necessary to monitor 45 

the evolution and potential impact of these variants on public health. 46 

 47 
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Background 56 

On May 5, 2023, the World Health Organization (WHO) declared that COVID-57 

19 is no longer a public health emergency of international concern (PHEIC) due to the 58 

decreasing trend in COVID-19 deaths, decline in COVID-19-related hospitalizations 59 

and intensive care unit admissions, and the high levels of population immunity to 60 

SARS-CoV-2 [1]. 61 

The Omicron (B.1.1.529) variant was designated as the fifth variant of concern 62 

declared by the WHO on November 26, 2021 [2]. A comparison between the B.1.529 63 

variant and the Wuhan-Hu-1 genome sequences revealed 53 nucleotide substitutions. 64 

Within these substitutions, 30 were nonsynonymous substitutions located in the spike 65 

gene [3, 4]. Additionally, there were six amino acid deletions at positions 69, 70, 143, 66 

144, 145, and 211. Furthermore, three amino acid insertions (EPE) were observed 67 

between positions 214 and 215, relative to the amino acid positions in the Wuhan-Hu-68 

1 spike protein [3, 4]. 69 

The major lineages that contributed to the pandemic from 2019 to 2022 were 70 

Omicron BA.1, BA.2, BA.3, BA.4, and BA.5 [5]. Recently, new variants have 71 

emerged, including BQ.1.1.10, BA.4.6.3, XBB, and CH.1.1, which had higher fitness 72 

than BA.5 [6-8]. This higher fitness includes evasion of neutralization drugs and 73 

convalescent plasma, even those targeting BA.5 breakthrough infections. The immune 74 
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escape mechanism of these new variants is primarily attributed to specific mutations 75 

at amino acid sites R346, R356, K444, V445, G446, N450, L452, N460, F486, F490, 76 

R493, and S494 within the receptor binding domain of the spike protein. These 77 

mutations have been observed in at least five different phylogenetic lineages, which 78 

suggests that there has been convergent evolution of the receptor binding domain 79 

driven by preexisting SARS-CoV-2 humoral immunity [6-8]. 80 

In this study, the evolution of the SARS-CoV-2 spike gene between December 81 

2022 and February 2023 was investigated. To summarize the major lineages of SARS-82 

CoV-2 and their spike gene evolution during this period, a phylogenetic tree and 83 

median-joining network were reconstructed. Furthermore, to identify amino acid sites 84 

that were potentially under positive selection and associated with adaptive changes in 85 

the spike gene, the nonsynonymous versus synonymous substitution ratio (dn/ds ratio 86 

= ω) was calculated. This was done using the site model in the codeml module of the 87 

PAML software [9]. 88 

Methods 89 

Data collection and analyses 90 

The file "spikeprot0304" containing spike protein sequences was downloaded from 91 

the Global Initiative on Sharing All Influenza Data (GISAID) [10]. To filter the 92 

sequences, the following criteria were applied using the Bioedit software [11]: the 93 
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collection days ranged from December 2022 to February 2023, the sequence lengths 94 

ranged from 1259 to 1319 amino acids, and sequences without undetermined amino 95 

acid X were included. After filtering, a total of 369,809 spike protein sequences were 96 

obtained from the "spikeprot0304" file. To determine the number of identical isolate 97 

sequences for different spike protein sequences in the GISAID database, the 369809 98 

spike protein sequences were further filtered using different spike protein sequences 99 

as references. Ultimately, 188 different spike protein sequences, referred to as protein 100 

haplotypes, were obtained. Each protein haplotype consisted of at least 100 identical 101 

isolate sequences within the set of 369809 spike protein sequences. For each protein 102 

haplotype, one representative accession ID (GIS_ISL_) was selected.  103 

To obtain the DNA sequences corresponding to the 188 spike protein haplotypes, 104 

I downloaded the complete genomes of these haplotypes from GISAID using their 105 

accession IDs. The downloaded complete genomes comprised the SARS-CoV-2 DNA 106 

sequences. I aligned the 188 complete genomes using MAFFT v.7.450 software [12], 107 

using the Wuhan-Hu-1 sequence (GenBank accession number: MN908947.3) as the 108 

reference sequence. The resulting alignment contained 189 DNA sequences, including 109 

the additional Wuhan-Hu-1 sequence. The spike DNA sequences were cut to a new 110 

alignment for phylogenetic and selection analyses. 111 
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To align the 189 spike DNA sequences, the DNA sequences were first translated 112 

into protein sequences using the Bioedit software. The translated protein sequences 113 

were then aligned using MAFFT v.7.450 software. Based on the alignment of the 114 

protein sequences, the corresponding DNA sequences were aligned using the Dambe 115 

software [13]. 116 

Reconstruction of phylogenetic tree and median join network 117 

I used the jmodeltest software [14] to determine the best evolutionary model for 118 

the alignment of the spike DNA sequences. To reconstruct phylogenetic tree, I 119 

conducted maximum likelihood (ML) and Bayesian analyses using IQ-TREE 120 

software [15] and MrBayes software [16], respectively. In ML analysis, the statistical 121 

support for the tree topology was assessed using 1000 bootstrap replicates. In BA 122 

analysis, the parameters of the likelihood model were set as nst = 6 and rate = 123 

invgamma, as determined by jmodeltest. The analysis was run for 107 generations, 124 

with a sample frequency of 1000 and a burn-in of 2500. The consensus tree with 125 

posterior probability was constructed based on 7500 trees.  126 

I reconstructed a median-join network based on the 189 spike DNA sequences. 127 

The lineages of the spike sequences were assigned according to the Pango-lineage 128 

nomenclatures [17] in the GISAID. The median network of the 189 spike DNA 129 

haplotypes was constructed with PopART software [18]. To enhance the visualization 130 
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of different lineages in the phylogenetic tree and median-join network, I used 131 

Inkscape and PowerPoint to edit the phylogenetic tree and median-join network. In 132 

Inkscape, I assigned different colors to the Pango lineages based on hexadecimal 133 

codes, while in PowerPoint, I used the corresponding RGB values to color-code the 134 

lineages. These editing steps were performed to facilitate the easy identification and 135 

differentiation of the various spike protein lineages in the phylogenetic tree and 136 

median-join network. 137 

To calculate the genetic distances between the major lineages of SARS-Cov-2, 138 

the 189 spike DNA haplotypes were divided into nine major groups: Wuhan-Hu-1, 139 

BA.1.1.529.2 (BA.2), BA.1.1.529.4 (BA.4), B.1.1.529.5 (BA.5), XBB.1, XBC, XBF, 140 

XBM, and XBZ. The net average distance (the net number of amino acid differences 141 

per sequence) was computed for all sequence pairs between these major groups using 142 

MEGA11 software [19]. The net average distance between two groups is given by 143 

dA = dXY – ((dX + dY)/2) 144 

Where, dXY is the average distance between groups X and Y, and dX and dY are the mean 145 

within-group distances [19]. The analysis assumed a uniform rate among sites, and 146 

pairwise deletion was used to handle gaps between sequences. 147 

To determine whether specific amino acid sites in the spike proteins of SARS-148 

Cov-2 were under selection, the nonsynonymous versus synonymous substitution 149 
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ratio (dn/ds ratio = ω) was calculated using the site model in the codeml program of 150 

the PAML software [20]. The ω ratio provides information about the balance between 151 

nonsynonymous (amino acid-changing) and synonymous (amino acid-preserving) 152 

substitutions at each site. A value of ω < 1 suggests purifying (negative) selection, ω = 153 

1 suggests neutral evolution, and ω > 1 suggests positive (diversifying) selection. 154 

Likelihood ratio tests were performed to compare different evolutionary models: 155 

M0 (one ratio) versus M3 (discrete), M1a (nearly neutral) versus M2 (selection), and 156 

M7 (beta) versus M8 (beta & ω). The Bayes empirical Bayes method was used to 157 

calculate posterior probabilities for site classes [21]. If the likelihood ratio test is 158 

statistically significant, it suggests that the amino acid sites are under selection. It is 159 

important to note that only the 188 spike DNA haplotypes were analyzed in this study. 160 

The Wuhan-Hu-1 sequence was not included in the analyses due to the absence of 161 

Wuhan-Hu-1 spike protein haplotypes in the GISAID database from December 1, 162 

2012, to February 2013. Amino acid sites with gaps in the spike DNA sequence 163 

alignment were deleted because the nonsynonymous versus synonymous substitution 164 

value cannot be calculated in the PAML software. The site numbering used the spike 165 

protein (protein ID=QHD416.1) of the Wuhan-Hu-1/2019 (GenBank accession 166 

number MN908947.3) as the reference for consistency. 167 

Results 168 
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Characteristics of the spike protein sequences 169 

According to the filtering criteria mentioned, a total of 369809 spike protein 170 

sequences were obtained from the spikeprot0304 file. Among these sequences, 171 

221323 isolates were collected in December 2022, 119971 isolates in January 2023, 172 

and 28515 isolates in February 2023. No isolate was filtered out in March 2023. The 173 

number of isolate sequences versus amino acid lengths of spike protein sequences is 174 

as follows: 1710 isolate sequences had 1266 amino acids, 57587 isolate sequences 175 

had 1267 amino acids, 216386 isolate sequences had 1268 amino acids, 45463 isolate 176 

sequences had 1269 amino acids, 47036 isolate sequences had 1270 amino acids, 547 177 

isolate sequences had 1271 amino acids, 528 isolate sequences had 1272 amino acids, 178 

and 253 isolate sequences had 1273 amino acids. Other spike protein sequences with 179 

lengths of 1259, 1260, 1261, 1262, 1263, 1264, 1265, 1274, 1275, 1276, 1277, 1281, 180 

1283, or 1319 amino acids had fewer than 72 isolate sequences (Fig. 1). Out of the 181 

189 spike protein haplotypes analyzed, there were 4 haplotypes with 1266 amino 182 

acids, 36 haplotypes with 1267 amino acids, 106 haplotypes with 1268 amino acids, 183 

16 haplotypes with 1269 amino acids, 25 haplotypes with 1270 amino acids, one 184 

haplotype with 1272 amino acids, and one haplotype with 1273 amino acids. The 185 

haplotype with 1273 amino acids is the Wuhan-Hu-1 sequence, but its spike protein 186 

haplotype was not found in the GISAID database from December, 2022 to February, 187 
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2023. 188 

Net average genetic distances of spike proteins between major lineages of SARS-189 

CoV-2 190 

  The net average genetic distances of spike protein between Wuhan-Hu-1 and 191 

B.1.1.529.2 (BA.2), B.1.1.529.4 (BA.4), B.1.1.529.5 (BA.5), XBB, XBC, XBF, and 192 

XBM were 34.54, 31, 37.07, 36.62, 35, 37, 33, and 31 amino acids per sequence, 193 

respectively. The net average genetic distances of spike protein between B.1.1.529.2 194 

(BA.2) and B.1.1.529.4 (BA.4), B.1.1.529.5 (BA.5), XBB, XBC, XBF, XBM, and 195 

XBZ were 9.41, 7.3, 11.87, 16.71, 1.71, 11.41, and 8.67 amino acids per sequence, 196 

respectively. The net average genetic distances of spike protein between B.1.1529.4 197 

(BA.4) and B.1.1.529.5 (BA.5), XBB, XBC, XBF, XBM, and XBZ were 1.99, 13.18, 198 

15, 12, 4, and 4 amino acids per sequence, respectively. The net amino acid 199 

differences per sequence of spike protein between B.1.1.529.5 (BA.5) and XBB, XBC 200 

XBF, XBM, and XBZ were 11.73, 14.12, 10.52, 3.9, and 1.4 amino acids per 201 

sequence, respectively. The net average genetic distances of spike protein between 202 

XBB and XBC, XBF, XBM, and XBZ were 19.62, 11.62, 15.18, and 12.93 amino 203 

acids per sequence, respectively. The net average genetic distances of spike protein 204 

between XBC, and XBF, XBM, and XBZ were 18, 17, 17 amino acids per sequence, 205 

respectively. The net average genetic distances of spike protein between XBF and 206 
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XBM and XBZ was 14 and 12 amino acids per sequence, respectively. The net 207 

average genetic distances of spike protein between XBM and XBZ was 6 amino acids 208 

per sequence (Table.1). 209 

Phylogenetic analyses of spike DNA sequences 210 

The phylogenetic tree of 189 spike DNA sequences (Fig. 2) consisted of three 211 

major clades. Clade I consisted of lineages or descendants of BQ.1, BF, and DN. It 212 

was positioned closer to the root of the tree. Clade II consisted of lineages or 213 

descendants of BA.5. It was located between clade I and clade III in the phylogenetic 214 

tree. Clade III was further distal to the root compared to clade II and consisted of 215 

subclades A, B, C, and D. Subclade A consisted of lineages or descendants of CM. 216 

Subclade B encompasses lineages or descendants of CH.1, CA, CV, and BR. 217 

Subclade C consisted of lineages or descendants of BN.1. Subclade D consisted of the 218 

lineage or descendant of XBB lineages. In the maximum likelihood (ML) analysis, it 219 

was found that the sequences BF.1.1 (EPI_ISL_16152392) and BF.7 220 

(EPI_ISL_16080401) within clade I occupied the most basal position when the 221 

phylogenetic tree was rooted by the Wuhan-Hu-1 sequence. Statistical analyses, 222 

including bootstrap values and posterior probabilities, provided strong support for the 223 

monophyly (common ancestry) of clade III and its subclades A, C, and D. A bootstrap 224 

value or posterior probability of more than 0.95 indicated a high level of confidence 225 
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in the grouping of sequences within these clades. 226 

Median-join network of spike DNA sequences 227 

Median-join network (Fig. 3) showed that the BF.11 (EPI_ISL_16152392) 228 

connected to Wuhan-Hu-1 Spike DNA sequences with 29 nucleotide substitutions. 229 

The network can be classified into six major clusters, i.e., BQ.1, BA.5, CH.1.1, CM, 230 

BN.1 and XBB.1. The BQ.1 cluster had two diversifying centers. In the BQ.1 cluster's 231 

first diversifying center, there were nine haplotypes with the following GISAID 232 

accession IDs (EPI_ISL_): 16027638, 16028737, 16029423, 16052382, 16052485, 233 

16064186, 16077475, 16113812, and 16660463. It is worth noting that these nine 234 

DNA sequences were considered identical in the analysis because the PopART 235 

software only counted nucleotide substitutions and did not count insertions or 236 

deletions in the alignment. In the BQ.1 cluster's second diversifying center, there were 237 

seven sequences with GISAID accession IDs (EPI_ISL_) of 16028751, 16028774, 238 

16029345, 16029559, 16052449, 16131848, and 16217334. These sequences also 239 

exhibited differences due to insertions and deletions. Among them, the spike protein 240 

sequence of EPI_ISL_16028774 was the most abundant, with 16194 isolates recorded 241 

in GISAID. The BA.5 cluster consisted of three haplotypes with GISAID accession 242 

IDs (EPI_ISL_) of 15973011, 16029234, and 16059569. These three spike DNA 243 

sequences also exhibited variations due to insertions and deletions. Among them, the 244 
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spike protein sequence of EPI_ISL_15973011 was the most abundant, with 18098 245 

isolates recorded in GISAID. The CH.1.1 cluster consisted of six spike DNA 246 

haplotypes that had diversified from an unknown haplotype. Among them, the spike 247 

protein haplotype (EPI_ISL_16044651) was the most abundant, with 7329 isolates 248 

recorded. It differed from the haplotype of EPI_ISL_16028739 (BA.5.11) by 11 249 

nucleotide substitutions. The CM cluster consisted of two haplotypes, namely 250 

EPI_ISL_16093062 and EPI_ISL_16029195, with 349 and 857 isolates, respectively. 251 

The spike DNA sequence of EPI_ISL_16029195 differed from that of 252 

EPI_ISL_16028774 (BQ.1.1) by 13 nucleotide substitutions. The XBB cluster 253 

consisted of 14 haplotypes, with its diversifying center consisting of two haplotypes 254 

with GISAID accession IDs (EPI_ISL_) of 16044705 and 16206019. Among these 255 

haplotypes, the spike protein haplotype of EPI_ISL_16044705 was the most 256 

abundant, with 24144 isolates recorded. It differed from the haplotype of 257 

EPI_ISL_16040256 (BN.1.2) by 13 nucleotide substitutions and from the haplotype 258 

of EPI_ISL_16028739 (BA.5.11) by 22 substitutions. The DNA haplotype of 259 

EPI_ISL_16168343 (XBC.1) differed from that of EPI_ISL_15973011 (BA.5.2) by 260 

19 nucleotide substitutions.    261 

Positive selection sites of spike protein 262 
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The values of likelihood ratio tests of M0 versus M3, M1a versus M2, and M7 263 

versus M8 comparisons were larger the critical values at 0.01 level. The results 264 

suggest that the M3, M2, and M8 models were statistically better than M0, M1a, and 265 

M7 models, respectively. The Bayes empirical Bayes (BEB) analyses of M2 models 266 

identified the 25 amino-acid sites under positive selection. These sites were located at 267 

the positions of L5**, W152 **, G181 **, N185 **, G213*, V213*, H245*, Y248*, 268 

D253**, S255*, S256**, G257*, R346**, R408*, K444**, V445**, G446**, 269 

N450**, L452**, N460*, F486**, Q613**, Q675*, T883**, P1162**, and V1264**, 270 

which were statistically significant at 0.05 (*) and 0.01 (**) levels. The M8 model 271 

identified an additional one more site at V83* which was not identified by M2 model 272 

(Table 2). The site of L5 was located in signal peptide domain (SP) of the spike 273 

protein. The V83, W152, G181, N185, G213, H245, Y248, D253, S255, S256 and 274 

G257 were located in N-terminal domain (NTD). The R346, R408, K444, V445, 275 

G446, N450, L452, N460, and F486 were located in receptor binding domain (RBD). 276 

The Q613 and Q675 were located in C-terminal domain 2 (CTD2). The T883 was 277 

located in fusion-peptide proximal region (FPPR). The P1162 was located between 278 

HR1 and HR2. The V1264 was located in cytoplasmic tail (CT). The nonsynonymous 279 

substitutions of selection sites ranged from 4 to 11 in each protein haplotype and the 280 

same nonsynonymous substitution in the same selection sites usually occurred in 281 
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different lineages except the substitutions of V83A, V213E, and V445P were 282 

exclusively occurred in the XBB lineage. Among these selection sites, the site of 444 283 

had the largest amino acid diversity. The nonsynonymous substitutions included 284 

K444R, K444T, K444M, and K444N that were occurred in 7, 94, 4, 5 of 188 protein 285 

haplotypes, respectively. 286 

Discussion 287 

  The presence of long and short spike protein sequences, with variations in amino 288 

acid length compared to the original Wuhan-Hu-1 spike protein, is not completely due 289 

to incomplete sequencing or sequence error. This conclusion is based on several 290 

observations made in the study. Firstly, the sequences did not contain ambiguous 291 

amino acids (represented by X). Secondly, all the sequences analyzed contained a 292 

start codon (M), Additionally, most sequences had a complete C-terminus domain. It 293 

is important to note that these variations in amino acid length were typically observed 294 

in the signal peptide or N-terminus domains, and rarely in the S2 region. Importantly, 295 

these insertions and deletions were never observed in the receptor binding domain 296 

(RBD) of the spike protein. The RBD is responsible for binding to the ACE-2 297 

receptor, which is essential for viral entry into host cells. The fact that strains with 298 

long or short spike proteins still maintained infectivity suggests that they were still 299 

able to bind to the ACE-2 receptor despite these variations of sequence lengths. 300 
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  The results showed that the net average genetic distances of spike protein between 301 

the Wuhan-Hu-1 strain and lineages of B.1.1.529.2, B.1.1.529.4, B.1.1.529.5, XBB, 302 

XBC, XBF, XBM, and XBZ ranged from 30.07 (between Wuhan-Hu-1 and 303 

BA.1.1.529.5) to 37 (between Wuhan-Hu-1 and XBF) amino acids per sequence. The 304 

results showed there was a great difference between the original (Wuhan-Hu-1) and 305 

current strains. Furthermore, the study specifically mentions the genetic distances 306 

between the XBB strain and several other strains. The genetic distances between XBB 307 

and lineages of B.1.1.529.2, B.1.1.529.4, B.1.1.529.5, XBC, XBF, XBM, and XBZ 308 

were 11.87, 13.18, 11.73, 19.62, 11.62, 15.18, and 12.93, respectively. Among these 309 

strains, XBC had the largest difference from XBB, with 19.62 amino acids per 310 

sequences. XBC was a recombinant of BA.2 Omicron (the most mutated) and 311 

B.1.617.2 Delta (the most severity) strains [22, 23]. It is important to continue 312 

surveillance and monitor the evolution of XBC. 313 

  The results of phylogenetic tree (Fig. 2) and median-join network (Fig. 3) revealed 314 

that the presence of multiple lineages of SARS-CoV-2 during December 2022 to 315 

February 2023. However, the majority of these lineages were descendants of three 316 

major lineages: BA.2, BA.5, and XBB. To help summarize the relationships between 317 

the lineages, the study employed the use of simplified names based on the Pango 318 
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lineage nomenclature. However, the full names providing a more detailed and precise 319 

identification of the lineages. 320 

  Firstly, the BA.2 (BA.1.1.529.2) consisted of the sub-lineages of CM 321 

(B.1.1.529.2.3.20), CA (B.1.1.529.2.75.2), CV (B.1.1.529.2.75.3.1.1.3), DV 322 

(B.1.1.529.2.75.3.4.1.1.1.1.1), CH (B.1.1.529.2.75.3.4.1.1), BR (B.1.1.529.2.75.4), 323 

BN (B.1.1.529.2.75.5), EJ.2 (B.1.1.529.2.75.5.1.3.8.2) and BY (B.1.1.529.2.75.6). 324 

Secondly, the BA.5 (BA. 1.1.529.5) consisted of eight major sub-lineages, i.e., 325 

BA.5.1, BA. 5.2, BA.5.3, BA.5.5, BA.5.6, BA.5.9, BA.5.10, and BA.5.11 in this 326 

study. The descendants of BA.5.1 (B.1.1.529.5.1) consisted of BA.5.1.5 327 

(B.1.1.529.5.1.5), BA.5.1.12 (B.1.1.529.5.1.12), BA.5.1.27 (B.1.1.529.5.1.27), and 328 

CL.1 (B.1.1.529.5.1.29.1) in this study. The descendants of BA.5.2 consisted of 329 

BA.5.2.1 (B.1.1.529.5.2.1), BF.5 (B.1.1.529.5.2.1.5), BF.7 (B.1.1.529.5.2.1.7), BU.1 330 

(B.1.1.529.5.2.16.1), CR.1.1 (B.1.1.529.5.2.18.1.1), CR.1.2 (B.1.1.529.5.2.18.1.2), 331 

CN.1 (B.1.1.529.5.2.21.1), CN.2 (B.1.1.529.5.2.21.2), BA.5.2.23 (B.1.1.529.5.2.23), 332 

CK.2 (B.1.1.529.5.2.24), in this study.  The descendants of BA.5.3 (B.1.1.529.5.3) 333 

consisted of BQ.1 (B.1.1.529.5.3.1.1.1.1.1), DU.1 (B.1.1.529.5.3.1.1.1.1.1.1.2.1), and 334 

CQ (B.1.1.529.5.3.1.4.1.1) in this study. The descendants of BA.5.6 (B.1.1.529.5.6.) 335 

consisted of BW.1.1 (B.1.1.529.5.6.2.1.1) in this study. The descendants of BA.5.10 336 

((B.1.1.529.5.10) consisted of DF (B.1.1.529.5.10.1) in this study. The BA.5.11 337 
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consisted of the BA.5.11 only. Thirdly, XBB was the recombinant of two BA.2 338 

lineages, i.e., BJ.1 and BM1.1.1 [24]. The EG.1 and FL.10 were the abbreviations of 339 

XBB.1.9.2.1 and XBB.1.9.1.10, respectively. The other recombinants include XBC (a 340 

recombinant of BA.2 Omicron and Delta), XBF (a recombinant of BA.5 and 341 

BA.2.75), and XBZ (a recombinant of BA.5.2 and EF.1.3) based on the Covid-lineage 342 

Pango designation (Roemer, 2022) [23]. The most dominant variant was the strain 343 

BQ. 1.1.23 with the representative accession number of EPI_ISL_16027638, and had 344 

55919 identical isolate sequences, following by XBB.1.5 (representative accession 345 

number EPI_ISL_16044705, 24133 identical isolate sequences), and BA.5.11 346 

(representative accession number EPI_ISL_16028739, 21798 identical isolate 347 

sequences) during December, 2022 to February, 2023. 348 

  The previous study demonstrated that certain mutations in the receptor-binding 349 

domain (RBD) of the spike protein, specifically at positions R346, K356, K444, 350 

V445, G446, N450, L452, N460, F486, F490, R493, or S494, could lead to the 351 

evasion of neutralizing monoclonal antibodies (mAbs) or enhance binding to the 352 

ACE2 receptor (Cao et al., 2022). In the present study, we found that mutations at 353 

R346, K444, V445, G446, N450, L452, N460, and F486 had a nonsynonymous 354 

versus synonymous substitution ratio greater than 1, indicating positive selection. This 355 

suggests that these sites were undergoing evolutionary changes that may confer 356 
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selective advantages to the virus. However, mutations at K356, F490, F493, or S494 357 

did not exhibit a nonsynonymous versus synonymous substitution ratio greater than 1 358 

in the present analysis, suggesting that these sites were not under positive selection 359 

during the specific time frame examined (December 2022 to February 2023) in the 360 

study (Table 2). This finding contrasts with the previous study, which analyzed 361 

sequences from January 2021 to October 2022. I propose that the discrepancy in 362 

results between the previous and present studies may be attributed to antigenic shift. 363 

It's possible that the evolutionary dynamics and selective pressures acting on SARS-364 

CoV-2 may have shifted, leading to different mutations being favored in different 365 

time periods. Additionally, the present study identified positive selection for 366 

mutations occurring outside of the RBD domain. These sites included L5, V83, 367 

W152, G181, N185, G213, H245, Y248, D253, S255, S256, Q613, Q675, T883, 368 

P1162, and V1264. However, the effects of these mutations on the fitness of SARS-369 

CoV-2 remain to be investigated. 370 

In this study, it was observed that multiple strains coexisted between December 371 

2022 and February 2023. However, the majority of these strains belonged to the 372 

lineages or sub-lineages of BA.2 (BA.1.1.529.2), BA.5 (BA.1.1.529.5), and XBB 373 

(Fig. 2). The diversifying centers of BN.1.2, BQ.1, BA.5.11, XBB were the isolate 374 

sequences with representative accession IDs (EPI_ISL_) of 16040256, 16027638, 375 
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16028739, and16044705, respectively (Fig. 3). I propose that the complete sequences 376 

or the receptor binding domain of these spike DNA sequences could be potential 377 

candidates for vaccine design. This suggests that these sequences may possess 378 

important characteristics that can be utilized in the development of effective vaccines 379 

against SARS-CoV-2. 380 

As of June 10, 2023, just before submitting our manuscript, the XBB.1.5 and 381 

XBB.1.16 strains have emerged as the globally dominant strains, with respective 382 

frequencies of 72% and 12% based on data from GISAID [25]. These strains have 383 

gained prominence and become widespread within the population. Additionally, the 384 

XBC variant is a recombinant of BA.2 (Omicron) and B.1.617.2 (Delta) [17, 23]. 385 

XBC exhibits significant differences from the XBB lineages and its sub-lineages, 386 

making it a distinct variant from XBB. Considering the success of the Omicron 387 

variant [3, 4], I propose that the XBC.1 strain or its sub-lineages could potentially 388 

become dominant strains following the XBB.1 lineage and its sub-lineages. Continued 389 

surveillance and research are necessary to monitor the evolution and potential impact 390 

of these variants on public health. 391 

  392 
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Figure legends 425 

 426 

Figure 1. Number of isolate sequences in GISAID of different lengths of spike 427 

protein from December 2022 to February 2023. 428 

 429 

Figure. 2. Phylogeny of SARS-CoV-2 spike DNA sequences. The terminal node 430 

(leaf) is the GISAID ID of the sequence followed by the lineage name in 431 

parentheses, the length of the spike protein, and the number of isolates. Statistical 432 

supports are labeled on the branches. The values below 60% are not labeled.  433 

 434 

Figure. 3. Median-join network of SARS-CoV-2 spike DNA sequences from 435 

December 2022 to February 2023. GISAID ID was labeled inside the circles. The 436 

number of isolates and lineages were labeled outside the circles. The number of 437 

nucleotide substitutions between haplotypes was labeled on the lines with hatch 438 

bars. When the hatch bars exceed 5, the substitutions were also labeled with 439 

numbers. 440 
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Table 1. The net average genetic distances of per sequence between nine-lineage 526 

spike proteins. All ambiguous positions were removed for each sequence pair 527 

(pairwise deletion option).  528 

 Wuhan-

Hu-1 

B.1.1.529.2 

(BA.2) 

B.1.1.529.4 

(BA.4) 

B.1.1.529.5 

(BA.5) 

XBB XBC XBF XBM 

B.1.1.529.2 

(BA.2) 

34.54        

B.1.1.529.4 

(BA.4) 

31.00 9.41       

B.1.1.529.5 

(BA.5) 

37.07 7.30 1.99      

XBB 36.62 11.87 13.18 11.73     

XBC 35.00 16.71 15.00 14.12 19.62    

XBF 37.00 1.71 12.00 10.52 11.62 18.00   

XBM 33.00 11.41 4.00 3.90 15.18 17.00 14.00  

XBZ 31.00 8.67 4.00 1.40 12.93 17.00 12.00 6.00 

  529 
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Table 2. Likelihood ration test of M0 vs M3, M1a vs M2, M7 vs M8, and amino acid 530 

site of spike protein under positive selection. 531 

* Statistically significant at 0.05, ** statistically significant at 0.01. 532 

  533 

Parameter M0 M3 M1a M2 M7 M8 

-lnL 7508.42 7281.49 7414.25 7295.08 7421.13 7322.99 

2ln (L1-L0) 453.86 (between 

M0 and M3) 

238.34 (between M1a and M2) 196.28 (between M7 and M8) 

df between 

models 

4 2 2 

Chi square 

test 

P<0.01 P<0.01 P<0.01 

Positive 

selective 

sites  

Not 

allow 

Not 

allow 

Not 

allow 

L5**, W152**, 

G181**, N185*, 

V213*, H245*, 

Y248*, D253**, 

S255*, S256**, 

G257**, R346**, 

R408**, K444**, 

V445**, G446**, 

N450**, L452**, 

N460*, F486**, 

Q613**, Q675*, 

T883**, P1162**, 

V1264** 

Not 

allow 

L5**, V83*, W152 

**, G181 **, N185 *, 

V213*, H245*, 

Y248*, D253**, 

S255*, S256**, 

G257*, R346**, 

R408*, K444**, 

V445**, G446**, 

N450**, L452**, 

N460*, F486**, 

Q613**, Q675*, 

T883**, P1162**, 

V1264** 
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 534 

535 
Fig 1. Number of isolate sequences versus different lengths of spike protein in 536 

GISAID from December 2022 to February 2023. 537 
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 539 

 540 

Fig. 2. Phylogeny of SARS-CoV-2 spike DNA sequences. The terminal node (leaf) is 541 

the GISAID ID of the sequence followed by the lineage name in parentheses, the 542 

length of the spike protein, and the number of isolates. Statistical supports are labeled 543 

on the branches. The values below 60% are not labeled.  544 
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 545 

 546 

Fig. 3. Median-join network of SARS-CoV-2 spike DNA sequences from December 547 

2022 to February 2023. GISAID ID was labeled inside the circles. The number of 548 

isolates and lineages were labeled outside the circles. The number of nucleotide 549 

substitutions between haplotypes was labeled on the lines with hatch bars. When the 550 

hatch bars exceed 5, the substitutions were also labeled with numbers. 551 
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