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Key points 
Question: What is the likely impact of COVID-19 from April 2023–April 2025 and to what 
extent can vaccination reduce hospitalizations and deaths? 
Findings: Under plausible assumptions about viral evolution and waning immunity, COVID-19 
will likely cause annual epidemics peaking in November–January over the two-year projection 
period. Though significant, hospitalizations and deaths are unlikely to reach levels seen in 
previous winters. The projected health impacts of COVID-19 are reduced by 10–20% through 
moderate use of reformulated vaccines. 
Meaning: COVID-19 is projected to remain a significant public health threat. Annual 
vaccination can reduce morbidity, mortality, and strain on health systems.  
 
Abstract 
Importance: COVID-19 continues to cause significant hospitalizations and deaths in the United 
States. Its continued burden and the impact of annually reformulated vaccines remain unclear. 
Objective: To project COVID-19 hospitalizations and deaths from April 2023–April 2025 under 
two plausible assumptions about immune escape (20% per year and 50% per year) and three 
possible CDC recommendations for the use of annually reformulated vaccines (no vaccine 
recommendation, vaccination for those aged 65+, vaccination for all eligible groups).  
Design: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 
hospitalization and deaths between April 15, 2023–April 15, 2025 under six scenarios 
representing the intersection of considered levels of immune escape and vaccination. State and 
national projections from eight modeling teams were ensembled to produce projections for each 
scenario.   
Setting: The entire United States.  
Participants: None. 
Exposure: Annually reformulated vaccines assumed to be 65% effective against strains 
circulating on June 15 of each year and to become available on September 1. Age and state 
specific coverage in recommended groups was assumed to match that seen for the first (fall 
2021) COVID-19 booster. 
Main outcomes and measures: Ensemble estimates of weekly and cumulative COVID-19 
hospitalizations and deaths. Expected relative and absolute reductions in hospitalizations and 
deaths due to vaccination over the projection period.  
Results: From April 15, 2023–April 15, 2025, COVID-19 is projected to cause annual epidemics 
peaking November–January. In the most pessimistic scenario (high immune escape, no 
vaccination recommendation), we project 2.1 million (90% PI: 1,438,000–4,270,000) 
hospitalizations and 209,000 (90% PI: 139,000–461,000) deaths, exceeding pre-pandemic 
mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those 
aged 65+ results in 230,000 (95% CI: 104,000–355,000) fewer hospitalizations and 33,000 (95% 
CI: 12,000–54,000) fewer deaths, while vaccination of all eligible individuals results in 431,000 
(95% CI: 264,000–598,000) fewer hospitalizations and 49,000 (95% CI: 29,000–69,000) fewer 
deaths.  
Conclusion and Relevance: COVID-19 is projected to be a significant public health threat over 
the coming two years. Broad vaccination has the potential to substantially reduce the burden of 
this disease.  
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Main text 
Introduction 
Three and a half years after the SARS-CoV-2 virus first emerged in Wuhan, China, it seems the 
global community has transitioned from confronting COVID-19 as a pandemic emergency to 
managing it as an endemic, seasonally recurring virus [1]. While widespread immunity against 
SARS-CoV-2 has been achieved globally through vaccination and infections [2], the continued 
evolution of the virus causes antigenic changes and raises the potential for recurrent epidemics 
[3,4]. Current evidence suggests that both patterns of human contact and environmental factors 
contribute to seasonality in the intensity of SARS-CoV-2 transmission [5–7]. Combined, 
seasonality and ongoing “antigenic drift” of SARS-CoV-2 make it highly likely that the virus 
will pose a persistent threat to public health for the foreseeable future.  
 
Going forward, one of the main tools for mitigating the impact of annual COVID-19 epidemics 
will be vaccination. As with influenza [8,9], continued antigenic drift of SARS-CoV-2 and 
intrinsic waning of the protection offered by previous vaccinations and infections (i.e., loss of 
immunity due to waning of immune protection, independent of the evolution of the virus) means 
regular re-vaccination with reformulated SARS-CoV-2 vaccines will be needed to mitigate the 
virus’s impact [10]. However, legitimate questions exist about how effective annual vaccination 
campaigns can be, given SARS-CoV-2’s rapid evolution, and what age ranges should be 
targeted, given the concentration of severe COVID-19 outcomes in older populations [11]. 
Hence, well-grounded projections of COVID-19’s impact under different vaccination scenarios 
help inform future vaccination policy. 
 
The U.S. COVID-19 Scenario Modeling Hub (SMH) is a long-standing multi-team modeling 
effort that aims to project how the COVID-19 epidemic is likely to unfold in the mid- to long-
term under various conditions [12,13]. These planning scenarios contrast various interventional 
strategies, characteristics of future viral variants, and other epidemiological or behavioral 
uncertainties, to provide projections of COVID-19 hospitalizations and deaths under each set of 
assumptions. By summarizing the results of multiple teams working on the same set of scenarios, 
the SMH takes advantage of the proven increased reliability of ensemble-based predictions over 
individual models [14]. Ensemble approaches have proven useful in multiple fields and across 
pathogens to inform public health policy, situational awareness, and individual decision-making 
[12]. 
 
Here, we present the results of applying the SMH approach to project the likely course of the 
COVID-19 epidemic in the United States over a two-year period (April 15, 2023–April 15, 2025) 
under different assumptions about the average speed of antigenic drift and possible 
recommendations for the use of reformulated annual COVID-19 vaccines from the Centers for 
Disease Control and Prevention (CDC). 
 
Methods 
To estimate the potential impact of vaccination on COVID-19 hospitalizations and deaths, we 
invited multiple teams in an open call to provide two years of projections for six scenarios within 
the SMH framework [13,14]. Teams had broad discretion in the details of model implementation 
within scenario definitions (see below). Individual team projections were combined to produce 
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ensemble projections for each scenario as well as an ensemble estimate of the expected impact of 
vaccination.  
 
Scenario definitions  
Six scenarios were created representing the intersection of two axes: one representing the 
average speed of antigenic drift (i.e., immune escape) over the two-year projection period, and 
the second representing differing assumptions about CDC recommendations for, and uptake of, a 
reformulated SARS-CoV-2 vaccine. The antigenic drift axis consisted of (1) a ‘low immune 
escape’ scenario, where the SARS-CoV-2 virus evolves away from the immune signature of 
circulating variants at a rate of 20% per year (e.g., a vaccine with efficacy against symptomatic 
infection of 65% on June 15, 2023 is assumed to have an efficacy of 0.8✕0.65=52% one year 
later in the absence of immune waning), and (2) a ‘high immune escape’ scenario with an 
immune escape rate of 50% per year.  
 
The vaccination axis consisted of three levels based on possible COVID-19 vaccine 
recommendations under consideration by the CDC Advisory Committee on Immunization 
Practices (ACIP): (1) no recommendation for annual vaccination with a reformulated vaccine, 
(2) a recommendation for those aged 65 and above (65+), and (3) a recommendation for all 
eligible groups. Across all scenarios, the vaccine is assumed to be reformulated to match the 
predominant variants circulating as of June 15 each year, and to become available to the public 
on September 1 of the same year. The annual uptake of reformulated vaccines in recommended 
groups is projected to follow the age group specific (0–17, 18–64, and 65+) uptake patterns 
observed for the first booster dose in each state (i.e., the first additional dose of vaccines after 
completing the primary series, authorized in September 2021) [15]. Uptake is assumed to 
saturate at levels reached one year after the recommendation (full uptake assumptions available 
on GitHub[16]; corresponding to 9% coverage in ages 0–17, 33% in 18–64, and 65% in 65+ 
nationally). Reformulated vaccines are presumed to have 65% vaccine effectiveness against 
symptomatic disease at the time of reformulation, with protection declining based on waning 
immunity and antigenic drift.  
 
All contributing models were directed to incorporate waning immunity, with a requirement that 
the median waning time of protection against infection aligned with the designated range of 3–10 
months. Furthermore, the incorporation of SARS-CoV-2 seasonality was required, though teams 
had discretion in terms of its implementation. Teams were directed not to consider changes in 
non-pharmaceutical interventions over the projection period. Full scenario details are available 
on GitHub[16].  
 
Ensemble projections 
Eight different modeling teams contributed projections of weekly incident and cumulative 
COVID-19 hospitalizations and deaths for April 15, 2023–April 15, 2025 for all states and at the 
national level (one additional team provided projections for only North Carolina). Each team 
provided up to 100 representative epidemic trajectories for each scenario and outcome. 
Trajectories were used to generate a probability distribution of incident outcomes each week. 
Distributions at each week were combined using the trimmed-linear opinion pool method (LOP) 
to create ensemble projections [14,17–19]. All reported numbers for incident and cumulative 
deaths and hospitalizations, and associated projection intervals (Pis), come from this ensemble.  
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To estimate the expected impact of vaccination, the mean and variance in cumulative deaths and 
hospitalizations were calculated over the period of interest based on submitted trajectories. 
Within each model, the expected impact of vaccination was determined by calculating the 
difference, or ratio, of projected deaths and hospitalizations between different vaccination 
scenarios sharing the same rate of immune escape, with variances estimated using the Delta 
method [20]. These individual model level estimates were then combined to produce an 
ensembled estimate of expected vaccine impact and associated confidence intervals (CIs) using 
standard meta-analysis techniques as implemented in the R package ‘metafor’ [21,22]. We note 
that in estimating vaccine impact we (1) take the vaccine impacts estimated by each model and 
then ensemble those (rather than looking at the impact in ensemble estimates) and (2) use 
different techniques in combining vaccine impact estimates aimed at getting expected values and 
confidence intervals (rather than predictions intervals). Hence, vaccine impact estimates are not 
directly reproducible by comparing ensemble trajectories (which are not mathematically 
equivalent).  
 
Results 
Based on the ensemble of projections from eight contributing models under plausible 
assumptions about the viral evaluation and annual vaccination recommendations from the CDC, 
we project that between April 15, 2023 and April 15, 2025, the United States will experience 
annual COVID-19 epidemics peaking between November and January and causing 
approximately 1 million cumulative hospitalizations and 100,000 cumulative deaths each year 
(Figure-1 & Table-1). The extent of COVID-19 impact over this period varies significantly by 
scenario, with 1.4 million (90% PI: 983,000–1,947,000) hospitalizations and 130,000 (90% PI: 
71,000–201,000) deaths over the two-year projection period in the most optimistic scenario 
(reformulated vaccines recommended for all individuals, 20% immune escape) and 2.1 million 
(90% PI: 1,438,000–4,270,000) hospitalizations and 209,000 (90% PI: 139,000–461,000) deaths 
in the most pessimistic scenario (no recommendation, 50% immune escape) (Figure-S1). While 
significant, even in the most pessimistic scenario we project deaths and hospitalizations are 
unlikely to be as high as the peak weekly hospitalizations seen in the first Omicron wave in early 
2022 (150,000 hospitalizations per week). Furthermore, projected weekly hospitalizations are 
likely to remain at or below CDC-designated medium community transmission levels (10–19 
weekly hospitalizations per year)[23] across all scenarios (Figure-1). There is moderate variation 
between states in peak timing and size of COVID-19 epidemic waves, although most generally 
follow national trends (Figures-S2 & S3). 
 
Ensemble projections indicate that annual vaccination has the potential to substantially reduce 
both hospitalizations and deaths from COVID-19 (Figure-2). In high immune escape scenarios, 
if vaccination is confined to 65+, and uptake patterns mirror what was seen for the first booster 
dose, we would expect a reduction in hospitalizations of 8% (95% CI: 5–12) compared to the no 
vaccination scenario and a reduction in deaths of 13% (95% CI: 7–18). This corresponds to 
absolute reductions of 230,000 (95% CI: 104,000–355,000) hospitalizations and 33,000 (95% 
CI: 12,000–54,000) deaths across the entire United States over the two-year projection period.  
 
Expanding vaccination recommendations to all individuals would lead to substantial additional 
reductions in deaths and hospitalizations (Figure-2). Under the assumption that coverage 
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equivalent to the first booster dose is attained, vaccination of all individuals reduces 
hospitalizations by 9% (95% CI: 5–13, N = 198,000, 95% CI: 120,000–276,000) and deaths by 
8% (95% CI: 3–14, N = 16,000, 95% CI: 11,000–22,000) compared to vaccination of 65+ alone 
in high immune escape scenarios. This corresponds to a total reduction of 17% (95% CI: 12–22, 
N = 431,000, 95% CI: 264,000–598,000) in hospitalizations and 20% (95% CI: 12–28, N = 
49,000, 95% CI: 29,000–69,000) in deaths compared to the no vaccination scenario. Results are 
similar in low immune escape scenarios.  
 
A significant factor contributing to state-level variation in the projected impact of vaccine 
recommendations is the assumed uptake level of reformulated vaccines (Figure-3, S4, and S5). 
States with higher coverage among 65+ are anticipated to experience substantial reductions in 
hospitalizations, exceeding 150 per 100,000 in high immune escape scenarios, if the 
reformulated vaccines are recommended to all. In contrast, the state with the lowest coverage in 
65+, North Carolina, is expected to witness reductions of less than 75 per 100,000. 
 
Discussion 
Based on the ensemble of projections from eight modeling teams for the next two years (April 
2023–April 2025), it is expected that COVID-19 will remain a persistent public health threat in 
the United States for the foreseeable future. Nevertheless, our projections highlight that annual 
vaccination with reformulated vaccines can substantially mitigate this burden if coverage reaches 
levels observed for the first (i.e., fall 2021) COVID-19 booster. 
 
Across all scenarios, our projections indicate that COVID-19 hospitalizations and deaths would 
be substantially less than what was seen in the early stages of the pandemic (e.g., between April 
2021–April 2023 there were 4.2 million hospitalizations and 570,000 deaths [24]). Nonetheless, 
COVID-19 is projected to remain one of the leading causes of death in the United States [25]. 
For context, in our most pessimistic scenario (no CDC vaccine recommendation, high immune 
escape), annual COVID-19 mortality is expected to be similar to pre-pandemic mortality from 
Alzheimer’s disease (Figure-4), while in the most optimistic scenario (vaccines recommended 
for all, low immune escape) mortality would be similar to that seen from diabetes in the pre-
pandemic period. In all cases, COVID-19 mortality is projected to exceed that of influenza and 
pneumonia. 
 
While the projected impact of annual vaccination on disease burden is significant, it is highly 
dependent on assumed vaccine uptake. This gives us reason for both caution and hope. Previous 
CDC booster recommendations, including that for the 2022 reformulated vaccine (i.e., bivalent 
vaccines authorized in August 2022), have not achieved the coverage observed for the first 
booster [26]. Reduced coverage would substantially blunt the impact of any vaccine 
recommendations. However, it is worth noting that many states where we assume low 
vaccination coverage, such as North Carolina and Pennsylvania, have not historically been 
ranked among the states with the lowest vaccine coverage for annual influenza vaccines [27], 
suggesting potential for increasing vaccine uptake in these regions. 
 
As with any attempt to project into the future, our projections come with major caveats and 
limitations. First and foremost, scenario projections are conditional on often strict scenario 
assumptions. Both vaccine coverage and effectiveness might deviate considerably from scenario 
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assumptions, although historical trends of influenza vaccination suggest that achieving higher 
coverage is unlikely (CDC, 2022b). Additionally, if future variants differ in intrinsic 
transmissibility or disease severity from that of the current Omicron lineages, the projected 
disease burden may alter accordingly. Furthermore, all scenarios were built on the assumption of 
continuous immune escape with a constant rate. However, the emergence of new SARS-CoV-2 
variants showing a significant level of antigenic drift within a very short span (e.g., Omicron 
[29,30]) could increase the disease burden far beyond these projections. 
 
Conclusion 
Despite its limitations, ensembling scenario-based projections from multiple teams is one of the 
most robust approaches for estimating COVID-19’s future burden and the potential benefits of 
vaccination, providing valuable information for public health planning. Our results show that 
COVID-19 will likely remain a major threat to human health in the United States in the coming 
years. In the face of this threat, broad vaccination against SARS-CoV-2 has the potential to save 
tens of thousands of lives each year.  
 
 
Data availability 
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Figure 1. Projected weekly COVID-19 hospitalizations in the United States across 
scenarios, April 2023–April 2025. 
Ensemble projections from the COVID-19 Scenario Modeling Hub of national COVID-19 
hospitalization for the period April 2023–April 2025 are shown by scenario. Dots indicate the 
observed weekly hospitalizations between December 2022 and August 12, 2023. Shading from 
lightest to darkest represents 90%, 80%, and 50% projection intervals. Red dashed lines 
correspond to the CDC-designated COVID-19 community-level indicators: medium (10–19 
weekly hospitalizations per 100,000) and high (>20 weekly hospitalizations per 100,000) levels. 
The vertical line on April 15, 2023 marks the start of the projection period.
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Figure 2. Percent and total prevented COVID-19 hospitalizations and deaths by annual 
vaccination recommendation with reformulated vaccines. 
Relative and absolute differences in cumulative hospitalizations and deaths over the next two 
years (April 2023–April 2025) between different vaccination recommendations. Red and blue 
dots and error bars represent the median and 95% confidence interval of percent prevented 
outcomes in high and low immune escape scenarios (50% per year and 20% per year), 
respectively.
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Figure 3. Relationship between prevented COVID-19 hospitalizations and assumed vaccine 
coverage in individuals aged 65 and above across US states. 
The relationship between the cumulative difference in COVID-19 hospitalizations for the next 
two years (April 2023–April 2025) under different vaccination recommendations and assumed 
vaccine uptake among those aged 65 and above (65+) in each US state: (A & B) vaccination of 
all compared to no vaccination, and (C & D) vaccination of 65+, compared to no vaccination. 
The x-axis represents the assumed vaccine coverage among 65+ at saturation considering the 
higher severity in 65+, and dots in each panel correspond to individual US states.
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Figure 4: Comparison between the projected COVID-19 mortality by scenario and the 10 
leading causes of pre-pandemic mortality in the United States. 
Projected COVID-19 mortality by scenario and by period (April 2023–April 2024 and April 
2024–April 2025) are compared with the 10 leading causes of mortality in the United States, 
which were obtained from the CDC age-adjusted disease burden rates in the pre-pandemic period 
[25]. 
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Table 1. Projected national peak timing and peak size of hospitalizations across scenarios. 
 April 15, 2023–April 14, 2024 April 15, 2024–April 15, 2025 

Scenario Peak timing Peak size Total 
hospitalizations Total deaths Peak timing Peak size Total 

hospitalizations Total deaths 

High immune escape 

No booster 
recommendation 

Dec 10 
(Oct 15–Apr 14) 

42,000 
(18,000–105,000) 

1,017,000 
(767,000–2,058,000) 

100,000 
(68,000–217,000) 

Dec 15 
(Oct 13–Apr 13) 

45,000 
(17,000–90,000) 

1,093,000 
(670,000–2,211,000) 

108,000 
(71,000–244,000) 

Booster 
recommended for 
65+ 

Dec 10 
(Oct 15–Feb 7) 

39,000 
(17,000–91,000) 

943,000 
(689,000–1,859,000) 

94,000 
(55,000–178,000) 

Dec 15 
(Oct 13–Feb 23) 

41,000 
(16,000–77,000) 

1,049,000 
(584,000–1,959,000) 

99,000 
(67,000–189,000) 

Booster 
recommended for all 

Dec 10 
(Oct 8–Feb 18) 

35,000 
(15,000–91,000) 

836,000 
(595,000–1,723,000) 

82,000 
(53,000–173,000) 

Dec 8 
(Jun 9–Feb 19) 

32,000 
(14,000–77,000) 

949,000 
(606,000–1,741,000) 

89,000 
(64,000–182,000) 

Low immune escape 
No booster 
recommendation 

Dec 13 
(Aug 13–Apr 14) 

36,000 
(16,000–81,000) 

825,000 
(676,000–1,169,000) 

79,000 
(57,000–124,000) 

Dec 29 
(Oct 27–Apr 13) 

35,000 
(14,000–76,000) 

956,000 
(578,000–1,304,000) 

85,000 
(49,000–166,000) 

Booster 
recommended for 
65+ 

Dec 10 
(Aug 13–Feb 18) 

34,000 
(15,000–68,000) 

767,000 
(620,000–1,020,000) 

70,000 
(45,000–111,000) 

Dec 22 
(Oct 27–Mar 9) 

32,000 
(13,000–65,000) 

857,000 
(485,000–1,128,000) 

80,000 
(34,000–109,000) 

Booster 
recommended for all 

Dec 3 
(Apr 30–Mar 3) 

26,000 
(13,000–57,000) 

670,000 
(487,000–920,000) 

63,000 
(38,000–101,000) 

Dec 15 
(Jun 12–Mar 9) 

28,000 
(12,000–51,000) 

717,000 
(496,000–1,027,000) 

67,000 
(33,000–100,000) 

Each value represents the median projection with 90% projection interval below.
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Supplementary figures 

 
Figure S1: Projected cumulative COVID-19 hospitalizations and deaths in the United States 
by scenario, April 2023–April 2025. 
Ensemble projections for cumulative COVID-19 hospitalization and deaths in the United States 
for the next two years (April 2023–April 2025) are shown by scenario. Lines and shades indicate 
the median of projected outcomes and 90% projection intervals. Each color represents different 
annual vaccination recommendations (no recommendation, reformulated vaccines recommended 
for those aged 65 and above, and recommended for all age groups). 
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Figure S2: State-level peak COVID-19 hospitalizations in high immune escape scenarios by 
season and vaccination scenario. 
The peak hospitalizations per 100,000 over the next two years (April 2023–April 2025) under high 
immune escape assumption are shown by US state and by vaccination scenario (no 
recommendation, reformulated vaccines recommended for those aged 65 and above, and 
recommended for all age groups). Shades of blue indicate states with lower values and shades of 
red indicate states with higher values. For visualizations, square root scaling was applied in x-axes. 
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Figure S3: State-level peak timing of COVID-19 hospitalizations in high immune escape 
scenarios by season and vaccination scenario. 
The peak timing of hospitalizations under high immune escape assumption is shown by US state 
and by vaccination scenario (no recommendation, reformulated vaccines recommended for those 
aged 65 and above, and recommended for all age groups). Shades of blue indicate states with lower 
values and shades of red indicate states with higher values.
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Figure S4: State-level percent prevented COVID-19 hospitalizations between the annual 
vaccination scenarios from April 2023 to April 2025 by scenario. 
Relative differences in cumulative COVID-19 hospitalizations over the next two years (April 
2023–April 2025) between different vaccination scenarios are shown by immune escape level and 
by US state. Shades of yellow indicate states with lower values and shades of purple indicate states 
with higher values.
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Figure S5: State-level percent prevented COVID-19 deaths between the annual vaccination 
scenarios from April 2023 to April 2025 by scenario. 
Relative differences in cumulative COVID-19 deaths over the next two years (April 2023–April 
2025) between different vaccination scenarios are shown by immune escape level and by US state. 
Shades of yellow indicate states with lower values and shades of purple indicate states with higher 
values. 
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