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SUMMARY

Viruses that replicate in the human respiratory mucosa without infecting systemically, including influenza A,
SARS-CoV-2, endemic coronaviruses, RSV, and many other ‘‘common cold’’ viruses, cause significant mor-
tality and morbidity and are important public health concerns. Because these viruses generally do not elicit
complete and durable protective immunity by themselves, they have not to date been effectively controlled
by licensed or experimental vaccines. In this review, we examine challenges that have impeded development
of effective mucosal respiratory vaccines, emphasizing that all of these viruses replicate extremely rapidly in
the surface epithelium and are quickly transmitted to other hosts, within a narrow window of time before
adaptive immune responses are fully marshaled. We discuss possible approaches to developing next-gen-
eration vaccines against these viruses, in consideration of several variables such as vaccine antigen config-
uration, dose and adjuventation, route and timing of vaccination, vaccine boosting, adjunctive therapies, and
options for public health vaccination polices.
INTRODUCTION

Effective vaccines and vaccine prevention strategies against

endemic and emerging respiratory viruses are of critical impor-

tance, as these pathogens kill as many as 5million people world-

wide every year. For example, over the past decade, influenza

killed 12,000–52,000 people in the United States each year1

and ranks among the leading causes of years of productive life

lost (YPLL). Endemic respiratory viruses such as respiratory syn-

cytial virus (RSV) and the parainfluenzaviruses take many addi-

tional lives, and previously unrecognized respiratory viruses

such as SARS-CoV-2, the cause of COVID-19, have emerged

unexpectedly. SARS-CoV-2 thus far has killed more than one

million people in the United States. The increasing frequency

of emergences of such pandemic respiratory viruses may be a

key feature of a new pandemic era,2 forcing us to consider

anew the state of respiratory virus vaccinology (Figure 1).2,3

Until the emergence of COVID-19, influenza had for many de-

cades been the deadliest vaccine-preventable viral respiratory

disease, one for which only less than suboptimal vaccines are

available. Surprisingly, little has changed with influenza vaccines

since 1957 when they were first administered in US national

vaccination programs. Over the years, influenza vaccines

have never been able to elicit durable protective immunity

against seasonal influenza virus strains, even against non-drifted

strains.4–7 Although current influenza vaccines reduce the risk of

severe disease, hospitalization, and death to some degree, their

effectiveness against clinically apparent infection is decidedly

suboptimal, ranging from 14% to 60% over the past 15 influenza
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seasons.1 Furthermore, the duration of vaccine-elicited immu-

nity is measured only in months. Current vaccines require annual

re-vaccination with updated formulations that are frequently not

precisely matched to circulating virus strains.8 Although annual

influenza vaccinations are strongly recommended for most of

the general public and especially for persons in high-risk groups,

including the elderly, those with chronic diseases, and pregnant

women, vaccine acceptance by the general public is not ideal.9

As of 2022, after more than 60 years of experience with influ-

enza vaccines, very little improvement in vaccine prevention of

infection has been noted. As pointed out decades ago, and still

true today, the rates of effectiveness of our best approved influ-

enza vaccines would be inadequate for licensure for most other

vaccine-preventable diseases.7 Even decades-long efforts to

develop better, so-called ‘‘universal’’ influenza vaccines—vac-

cines that would create more broadly protective immunity, pref-

erably lasting over longer time periods8,10—have not yet resulted

in next-generation, broadly protective vaccines, although a large

number of experimental vaccines are in preclinical or early

clinical development.11

During the COVID-19 pandemic, the rapid development and

deployment of SARS-CoV-2 vaccines has saved innumerable

lives and helped to achieve early partial pandemic control.12

However, as variant SARS-CoV-2 strains have emerged, defi-

ciencies in these vaccines reminiscent of influenza vaccines

have become apparent. The vaccines for these two very different

viruses have common characteristics: they elicit incomplete

and short-lived protection against evolving virus variants that

escape population immunity.12–15 Considering that vaccine
Inc.
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Figure 1. Alveolar damage in fatal COVID-19 lung autopsy samples
Multicolor immunofluorescence showing prosurfactant protein C (green) and
E-cadherin (red) expression in normal lung tissue (top) and in a COVID-19 lung
autopsy case (bottom). Nuclei are stained blue. Normal lung tissue alveolar
septa show prominent prosurfactant protein C and E-cadherin expression in
lung alveolar type 2 cells and epithelial junctions, respectively, compared to
fatal COVID-19 lung tissue, which shows marked loss of alveolar septal pro-
surfactant protein C and E-cadherin staining and intra-alveolar accumulation
of positive-stained epithelial debris.
The images demonstrate the extensive damage to the lung observed in a fatal
COVID-19 case. New generations of vaccines against respiratory viruses like
SARS-CoV-2 and influenza viruses are critically important for preventing pul-
monary pathology, serious illness, and death.
Images of normal lung and a COVID-19 autopsy case are derived from
D’Agnillo F, et al. Sci Transl Med. 2021;13(620):eabj7790. Images courtesy of
Dr. Felice D’Agnillo of the US Food and Drug Administration.
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development and licensure is a long and complex process

requiring years of preclinical and clinical safety and efficacy

data, the limitations of influenza and SARS-CoV-2 vaccines

remind us that candidate vaccines for most other respiratory vi-

ruses have to date been insufficiently protective for consider-

ation of licensure, including candidate vaccines against RSV, a

major killer of infants and the elderly,16–21 parainfluenzaviruses,

endemic coronaviruses,22 and many other ‘‘common cold’’ vi-

ruses that cause significant morbidity and economic loss.

More than 50 years ago, the development of successful vac-

cines against some of the most important respiratory viruses,

including measles, mumps, and rubella, led to the hope that
vaccines could soon be developed for all other respiratory vi-

ruses. However, natural infections with these three vaccine-

controlled respiratory viruses, as well as smallpox and varicella

zoster virus (VZV), are not representative of infections caused

by most respiratory viruses. They differ in at least three critically

important ways that are related to their successful control with

vaccines (Table 1):

(1) after first replicating mucosally, these systemic respiratory

viruses all cause significant viremia that seeds an enormous

number of infectious virions throughout the body, putting

them in contact with multiple immune compartments and im-

mune competent cell types,

(2) they have relatively long incubation periods that reflect

initial mucosal replication and the subsequent systemic

spread of infectious virions, which allows time for the induc-

tion of the full force of adaptive immunity, and

(3) they elicit long-term or lifetime protective immunity

(Table 1).

In stark contrast, the non-systemic respiratory viruses such as

influenzaviruses,SARS-CoV-2, andRSV tend tohave significantly

shorter incubationperiods (Table 1) and rapid coursesof viral repli-

cation. They replicate predominantly in local mucosal tissue,

without causing viremia, and do not significantly encounter the

systemic immune system or the full force of adaptive immune re-

sponses, which take at least 5–7 days tomature, usually well after

the peak of viral replication and onward transmission to others.

SARS-CoV-2 ‘‘RNAemia’’ (circulation of viral RNA in the blood-

stream, as is seen with most mucosal respiratory virus infections,

asdistinct fromviremia, inwhich infectious viruses canbecultured

fromtheblood), hasbeen reported,andRT-PCR levelsofviralRNA

have been linked to severe disease,23,24 similar to studies of influ-

enza RNAemia.25,26 As a result, the non-systemically replicating

respiratory viruses, apparently including SARS-CoV-2,13–15 tend

to repeatedly re-infect people over their lifetimes without ever

eliciting complete and durable protection.27

Another important factor to consider is that although RNA vi-

ruses share a similar inherent RNA-dependent RNA polymerase

error rate,28 different viruses (and different open reading frames

within their genomes) differ in their tolerance for mutation. Muta-

tional constraints can be related to frequent overlapping open

reading frames28 or functional constraints on the acquisition

of nonsynonymous mutations as is the case, for example, with

measles virus.29 In contrast, the external influenza A virus hem-

agglutinin and neuraminidase proteins are comparatively plastic,

and positively selected nonsynonymous mutations result in

immunologically significant antigenic drift,30,31 by the acquisition

of nonsynonymousmutations in antigenic epitopes, as well as by

altering the N-linked glycosylation patterns.32 Rapid antigenic

drift affects the control of annual influenza epidemics8 and com-

plicates the effort to produce broadly protective, ‘‘universal’’

influenza vaccines. The SARS-CoV-2 spike protein has shown

a similar plasticity, with the emergence of multiple variants with

altered antigenicity33 that has complicated its control through

current vaccination strategies.34

Although rapid evolution of antigenically variable mucosal vi-

ruses like influenza A viruses35 and SARS-CoV-2 complicate

next-generation vaccine design, other mucosal-only respiratory
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Table 1. Epidemiologic and immunologic parameters of selected human respiratory viruses and vaccines used to control them

Virus

Incubation

perioda

Marked

viremia

Infection elicits long-term

protective immunity

Re-infections

are rare

Vaccines elicit long-term

protective immunity

Vaccine

type

Measles (to

prodrome)

z10 days yes yes yes yes replicating

Mumps z16 days yes yes yes yes replicating

Rubella z16 days yes yes yes yes replicating

Smallpoxb z12 days yes yes yes yes replicating

VZVc z14 days yes yes yes yes replicating

Endemic coronaviruses z5 days no no no no none

Influenza virus z2 days no no no no replicating, other

Parainfluenzaviruses z4 days no no no no none

RSV z5 days no no no no none

SARS-CoV-2 z4 days nod no no no non-replicating
aViral incubation periods, especially shorter incubation periods, typically have very broad ranges; these estimates are taken from cross-sections of the

literature.
bSmallpox was eradicated from natural circulation in 1978.
cVaricella-zoster virus (VZV) recrudescence (referred to as zoster, zona, or ‘‘shingles’’) results from release of latent viruses from ganglia; second exog-

enous respiratory infections in normal persons are rare.
dAlthough SARS-CoV-2 antigens have been detected in multiple tissues, the virus does not appear to be associated with significant ‘‘free’’ viremia, as

evidenced by difficulty in culturing infectious virions from blood or tissues, and by weak elicitation of broad and durable protective systemic immunity.
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viruses, such as RSV, have shown much less antigenic plas-

ticity36–38; however, it still causes repeated infections over a life-

time without the development of long-term protective immu-

nity.39,40 Thus, although genetic and antigenic variability of

viruses like influenza and SARS-CoV-2 make vaccine design

more challenging, these factors by themselves cannot fully

explain the lack of elicitation of long-term protective immunity

against other respiratory mucosal viruses like the more pheno-

typically stable RSV.

Taking all of these factors into account, it is not surprising that

none of the predominantly mucosal respiratory viruses have ever

been effectively controlled by vaccines. This observation raises a

question of fundamental importance: if natural mucosal respira-

tory virus infections do not elicit complete and long-term protec-

tive immunity against reinfection, how can we expect vaccines,

especially systemically administered non-replicating vaccines,

to do so? This is a major challenge for future vaccine develop-

ment, and overcoming it is critical as we work to develop

‘‘next-generation’’ vaccines.

Key challenges (summarized in Table 2) are discussed below,

along with ways to confront them in the pursuit of new and

improved vaccines for respiratory viruses.
NATURAL INFECTIONS WITH MUCOSAL RESPIRATORY
VIRUSESMAY NOT BE FULLY CONTROLLED BY HUMAN
IMMUNE RESPONSES BECAUSE THE HUMAN IMMUNE
SYSTEM HAS EVOLVED TO TOLERATE THEM DURING
VERY SHORT INTERVALS OF MUCOSAL VIRAL
REPLICATION

The signs and symptoms of many different mucosal respiratory

virus infections are remarkably similar: a short duration of illness

and a typically uncomplicated course featuring rhinorrhea,

sneezing, sore throat, variable cough, malaise, and in many

cases low or absent fever.41 These commonalities strongly sug-
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gest similar pathogenic mechanisms for these viruses involving

host inflammatory and innate immune responses.

The inability of mucosal respiratory viruses to elicit durable

protective immunity reflects, among many other factors, evolu-

tionary adaptation of virus to host, and host to virus. In this evolu-

tionary relationship, viruses have two important advantages: (1)

the human respiratory immune system has evolved to express

complex tolerance regulation (see below) that may inhibit effec-

tive viral immune elimination during the first 5–7 post-inoculation

days, when innate immune responses predominate; and (2) very

short incubation periods (Table 1) allow substantial and unchal-

lenged viral replication and onward viral spread before adaptive

immune responses can be adequately mounted to eliminate

them.42,43

Moreover, the several compartments of the respiratory

immune system function in significantly different ways than do

immune system compartments in other organ systems. In partic-

ular, the respiratory immune system resides in separate tissue-

specific areas of the semi-organized, mucosal-associated

lymphoid tissues (MALTs) of the tear/conjunctival associated

lymphoid tissue (TALT), nasopharyngeal associated lymphoid

tissue (NALT), bronchial associated lymphoid tissue (BALT),44

and in separate pulmonary compartments. Each of these com-

partments independently senses viral infection and antigen pre-

sentation, interacts with the other compartments and with the

systemic immune system, initiates local effector responses,

and maintains a variably tolerized immune state.

The terms ‘‘disease tolerance’’ and ‘‘immune tolerance’’ refer

to the still-incompletely characterized but distinct category of

mammalian immune defense mechanisms that allow hosts to

‘‘accept’’ infection and other antigenic stimuli to optimize

survival (reviewed in Medzhitov et al.42 and Iwasaki et al.43).

Because humans inhale and ingest enormous quantities of exog-

enous proteins with every breath and mouthful, the respiratory

and gastrointestinal immune compartments have evolved to



Table 2. Key challenges in developing next-generation vaccines

against mucosal respiratory viruses including SARS-CoV-2,

influenza A viruses, and emerging pandemic and other viruses of

importance

(1) Natural infections with mucosal respiratory virusesmay not be fully

controlled by human immune responses because the human immune

system has evolved to tolerate them during very short intervals of

mucosal viral replication

(2) Since mucosal and systemic immunity only partially protects

against infection with mucosal respiratory viruses, we must take

advantage of alternative host immune mechanisms

(3) Immune correlates of protection against mucosal respiratory

viruses are incompletely understood, vary between viral strains and

subtypes, with viral drift, and they exhibit inter-individual variation

(4) Vaccine-related questions of route of administration, antigen

configuration, adjuventation, and association with adjunctive therapy

are of great importance for current research

(5) Vaccinated hosts and host risk groups are many and

heterogeneous

(6) Public health considerations relating to next-generation

respiratory vaccines must contribute to shaping vaccine design,

including vaccine schedule, role of boosting, frequency of vaccination

and duration/completeness of protection, side effects, and public

acceptance
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deal with continual and massive antigenic assaults from the

outsideworld. (Immune responses to viral infection of the gastro-

intestinal mucosa have recently been reviewed,45 and are not

discussed here.) Inhaled and ingested proteins must be identi-

fied and either tolerated or attacked and eliminated. This

requires a highly evolved and complicated immune ‘‘decision-

making’’ strategy that simultaneously accepts harmless foreign

proteins while down-regulating immune responses to infectious

agents and allergens that otherwise might cause bystander

tissue damage.46–50

From the teleological point of view of the pathogen, mucosally

replicating/non-systemic respiratory viruses have adapted over

millennia to tolerized host immune environments to optimally

infect, replicate, and spread quickly, before adaptive immune re-

sponses can be fully marshaled to control them. Among other

tactics, they do so by inhibiting host interferon (IFN) responses

(as do other systemically replicating RNA viruses), expressing

decoy antigens, and inducing aberrant immune responses that

promote viral survival without causing significant host tissue

damage.16 The host respiratory microbiome contributes to this

balance as well, on one hand by limiting infection (for example,

by regulating IFN production) or on the other hand by promoting

infection (for example, inducing antiviral states of immune toler-

ance).46,51–53 The gut microbiome has also been associated with

individual variation in vaccine response, and this association

also needs further in-depth investigation54,55

A better understanding of the afferent arm of these

systems46,49,51,52,56–63 is needed, including the roles of upper

airway epithelial cells (which play a key role in sensing foreign

materials including viral pathogens). transepithelial antigen-

sensing and -presenting cells such as M cells and intraepithelial

dendritic cells, immune regulation, tolerance homeostasis, IgA

control, and the expression and effects of class-switched

IgA.64 The latter is locally stimulated by incoming mucosal anti-
gens and, in addition to its viral neutralization and other effector

functions, is more cross-protective than other immunoglobulins

in its secretory form,65,66 initiates antibody-dependent cellular

cytotxocity (ADCC), and is an immune regulator.67–70 The impor-

tance of mucosal secretory IgA (sIgA) in pathogen-specific re-

sponses against respiratory viral infections has long been appre-

ciated for influenza viruses,65,71 RSV,72,73 and more recently

SARS-CoV-2.74,75

The immunologic ‘‘Faustian bargain’’ between tolerance

versus infection control, which permits transient, moderated

infection by respiratory agents of low or intermediate pathoge-

nicity to restrain the destructive forces of an immune elimination

response,16,59 may be problematic for vaccine control of respira-

tory viruses, not only in the local and systemic sensing of vaccine

antigens but also in eliciting optimal immune responses. Not sur-

prisingly, immune tolerance is most pronounced in the upper

respiratory tract, where respiratory viruses are inoculated,

compared with the lower respiratory tract,49,57,76 where some

respiratory viruses may spread if not contained (see below).

This presents an additional challenge to developing vaccines

that should ideally both dampen initiation of viral infection and

control infection post inoculation.

The human tolerance/immune response paradigm is not

unique. A more extreme version is found among some bat spe-

cies: during long hibernations, bats conserve survival energy

by tolerating enormous burdens of infection over long periods.77

This phenomenon is of more than passing interest because it

may explain, in part, why bats are such important incubators of

numerous viruses (coronaviruses, filoviruses, henipaviruses,

rabies viruses, etc.) with cross-over potential to humans. Ironi-

cally, immune tolerance mechanisms in bats and other host spe-

cies may be important determinants of the emergence of human

epidemics and pandemics, just as they facilitate human-to-hu-

man spread of human-adapted viruses.
SINCE MUCOSAL AND SYSTEMIC IMMUNITY ONLY
PARTIALLY PROTECTS AGAINST INFECTION WITH
MUCOSAL RESPIRATORY VIRUSES, WE MUST TAKE
ADVANTAGE OF ALTERNATIVE HOST IMMUNE
MECHANISMS

For example, the recently appreciated phenomenon of ‘‘trained

innate immunity’’46–50 may offer promise that future vaccines

might someday be able to boost innate immune responses either

to specific pathogens or non-specifically. However, a key unan-

swered question remains how to control these responses to

avoid harmful inflammatory consequences.78

Many studies in humans and experimental animals, some

before sIgA had been recognized,22,58,79–81 indicate that secre-

tory mucosal immunity is generally more effective than systemic

immunity in controlling mucosal respiratory viruses18,79,82 and

that tissue-resident memory T cells can be effective in rapidly re-

sponding to mucosal infection.83 The main humoral effectors at

mucosal sites are sIgA expressed upon mucosal surfaces by

local IgA-secreting plasma cells/plasmablasts andT cellmemory

and effector cells in the MALT.18,58,61,70,81,84–86 Nasal sIgA is the

best correlate of protection in RSV challenge studies,18 even in

the absence of systemic IgA-producing B cells. Similar results

are seen with other viruses, including SARS-CoV-2.87–90
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Although non-systemically replicating mucosal viruses elicit sys-

temic effectors, including systemic IgA-producing plasma cells

and in somecases high levels of serum IgA and IgG, neither circu-

lating antibodies, plasmablasts, nor systemic B or T or T effector

cells function optimally at mucosal sites. This is due in part to the

dilution of transuded antibody and the fact that many such

effector cells lack trafficking signals to these sites.85

It is therefore important to consider natural situations in which

acquired antibody-mediated immunity does control non-sys-

temic mucosal respiratory viruses. As long ago as 1918, it was

shown that passively administered influenza immune plasmas

could limit human influenza infection.91 In the 1940s, inhaled

aerosolized influenza antibodies were also shown to have an ef-

fect against clinical influenza.92 Influenza infection generates du-

rable systemic immune memory responses, as indicated by the

detection of specific memory B cell clones 90 years after infec-

tion with the 1918 influenza virus93; however, low levels of circu-

lating immunoglobulin and the time lag between infection and

development of an anamnestic response may not offer neutral-

izing protection against a rapidly replicating influenza virus.

Similar observations have been made with other mucosal respi-

ratory viruses. For example, maternal IgG antibodies, especially

antibodies against RSV F protein, protect against infant RSV16–19

and a parenterally administered humanized monoclonal anti-

body prevents RSV infection in at-risk infants.20

Nevertheless, the effectiveness of circulating Ig in these situa-

tions depends on transudation to mucosal surfaces of very high

titers of antibody with specificity for key viral epitopes. It is not

fully understood how such transudation is controlled, how

antiviral IgA is regulated to function in both passive immunity

and immune regulation,67,94 or how to elicit and sustain such

high antibody levels with vaccination.

Apart from preventing initial infection, it is also important to

consider the role of host immunity in limiting viral spread once

infection has been established. Respiratory viruses usually first

infect the mucosa of the upper respiratory tract, where IgA is

most effective in antiviral control;95 however, some may spread

contiguously to the lower respiratory tract, even to the pulmo-

nary alveoli. This is of considerable significance for a subset of

pneumogenic respiratory viruses such as influenza, RSV, and

possibly SARS-CoV-2. These viruses are normally limited to

the upper respiratory tract but can escape immune control and

spread into the lungs to cause primary viral pneumonia with or

without secondary bacterial pneumonia, often the principal

causes of death from these infections.96 Moreover, evidence

suggests that viral-bacterial coinfection may facilitate viral, and

viral/bacterial airborne transmission97 and may even increase

case-fatality, a phenomenon noted as long ago as 1917.98

The lung is functionally and immunologically different from the

upper respiratory tract, containing both resident alveolar macro-

phages within the alveoli and resident immune and memory cells

in peribronchiolar niches.85 The latter niches are composed of

immune cells that are absent at birth but develop in response

to post-natal antigenic exposures,86 which differ greatly among

individuals andmay expand in response to antigenic stimulation.

Because the pulmonary immune system is semi-autonomous, it

may be difficult for either systemically administered or upper res-

piratory-administered vaccines designed to prevent infection to

additionally prevent pulmonary infection if upper respiratory
150 Cell Host & Microbe 31, January 11, 2023
infection spreads to the lungs. For instance, because IgA ap-

pears to be a better effector in the upper respiratory tract,

whereas IgG is better in the lung,82 it may be difficult to develop

single vaccines that protect against all respiratory tissues. The

implications for vaccinology are clear: preventing viral upper res-

piratory infection and limiting post-infection viral spread to

contiguous respiratory compartments are both critical but may

not be easily achieved with single vaccines.

To understand how vaccines might protect against lower

respiratory infections, we will need to learn how the ‘‘cross-

talk’’ between upper respiratory, lower respiratory, and systemic

immune systems is coordinated and controlled, at the level of

cell receptors, antigen sensing, antigen presentation, and

numerous effector functions.49,50,61,82 We also need to further

investigate the development and maintenance of viral-specific

lung resident memory B and T cells, how to increase their persis-

tence in the lung, and how quickly they can be mobilized to

infected mucosal sites.99,100
IMMUNE CORRELATES OF PROTECTION AGAINST
MUCOSAL RESPIRATORY VIRUSES ARE
INCOMPLETELY UNDERSTOOD, VARY BETWEEN VIRAL
STRAINS AND SUBTYPES, WITH VIRAL DRIFT, AND
THEY EXHIBIT INTER-INDIVIDUAL VARIATION

In developing next-generation vaccines, we will need to identify

strong immunologic correlates of protection against each

mucosal respiratory virus and agree about their relevance to

public health vaccination goals.80,101,102 Additional immune

correlate studies in humans are clearly needed and should be

a research priority. Following influenza infection in humans,

studies have long identified serum and mucosal immunoglobulin

correlates103–105 and T cell immune correlates.104,106,107 In

contrast, a human influenza challenge study after vaccination

with inactivated vaccines or live-attenuated influenza vaccine

(LAIV), followed by LAIV challenge, was unable to find any immu-

nologic correlates of protection.108

The immune system is complex with many effectors. Serum

antibody titers to various viral epitopes may only indirectly corre-

late with protection because of association with other more crit-

ical (but not usually measured) immune effectors, such as

mucosal immunoglobulins65 or, for example, steric interactions

of hemagglutinin stem antibodies resulting in neuraminidase in-

hibition.109 In recent human challenge studies, serum neuramin-

idase antibody titers were more strongly correlated with different

measures of protection compared with hemagglutinin head or

stem antibody titers.110,111 Neuraminidase remains and under-

appreciated vaccine target for next-generation influenza vaccine

design.112 In short, correlations between serum antibody titers

and susceptibility to influenza infection may be statistically valid

in large studies, but imperfect in the context of individual varia-

tion, rapid viral evolution, and waning titers.

For each mucosal virus, we must also arrive at consensus on

desired levels of protection; for example, goals for protection

might be:

d preventing infection entirely, as vaccines for systemic res-

piratory viruses may do (Table 1);
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d limiting viral replication or preventing transmission as with

influenza anti-neuraminidase immunity;

d preventing disease; or

d only preventing severe disease (e.g., requiring hospitaliza-

tion), as appears to be the case with some influenza virus

and SARS-CoV-2 vaccines.

Such consensus is needed if we are to develop the best vac-

cines and optimized vaccination strategies and policies for using

them. With influenza, for example, vaccines historically have

been designed to prevent upper respiratory infection, not sec-

ondary pulmonary infection associated with spread from the

upper respiratory tract. This has proved problematic because

current influenza vaccines are suboptimal at both preventing

infection and eliciting pulmonary immunity.113 Although influenza

and SARS-CoV-2 vaccines reduce disease severity when vac-

cines fail to prevent infection, significant numbers of fatalities still

occur, resulting in tens of thousands of annual influenza deaths

in the United States.114–116 With the imperfections of these

vaccines, it seems a public health imperative to aggressively

pursue better vaccines and vaccination strategies.

VACCINE-RELATED QUESTIONS OF ROUTE OF
ADMINISTRATION, ANTIGEN CONFIGURATION,
ADJUVENTATION, AND ASSOCIATION WITH
ADJUNCTIVE THERAPY ARE OF GREAT IMPORTANCE
FOR CURRENT RESEARCH

Humanmucosal surfaces amount to 30–40 square feet,82 almost

entirely underlaid with active lymphoid tissues. The predominant

antibody at most of these sites is sIgA, representing an extraor-

dinary 65%–70% of all human immunoglobulins.81 It is increas-

ingly accepted that route of vaccine administration (e.g., intra-

muscular, intranasal, conjunctival, or aerosol routes) is a key

determinant of mucosal respiratory response.

In general, and when feasible, mucosal immunization seems

the optimal approach for respiratory viruses52,58,61,70,81,86,117;

however, in contemplating next-generation vaccines we also

may need optimized formulations, higher vaccine doses, greater

frequency of vaccine administration, and overcoming immune

tolerance challenges.

It is important for each virus to answer key questions such as:

(1) Can non-replicating vaccines, whichmay be considerably

less effective at eliciting IgA,82 be as efficacious as repli-

cating vaccines, such as live-attenuated virus vaccines

and live vaccine vectors expressing key viral proteins?

(2) Can single- or pauci-antigen vaccines provide protection

equivalent to more antigenically complex vaccines?

(3) Can higher antigen doses or repeat vaccinations elicit

better immunity?

(4) What are the differential effects of soluble versus particu-

late antigens?82

(5) What are ideal relationships between vaccine antigen

load and systemic or mucosal adjuventation?118

(6) What are the optimal strategies for routes and timing of

vaccination: mucosal/systemic ‘‘prime-boost’’? Newer

strategies such as ‘‘prime-pull’’ and ‘‘prime-deploy’’

(vaccination strategies to elicit systemic T cell responses

followed by recruitment of activated T cells via attractant
or recruitment of resident memory T cells, respectively, to

lung)119–122 and others?

It is noteworthy that all of the vaccines that are successful

against the systemic respiratory viruses (Table 1)—those which

generally elicit broader and longer lasting protective humoral

and cell-mediated immunity—are systemically replicating live vi-

rus vaccines that fully encounter the host mucosal and systemic

immune system. The imperfect protective properties of LAIV

nasal spray represents an exception that might result from

over-attenuation, pre-existing LAIV immunity, compositional bal-

ance, antigenic drift, or other yet unappreciated factors.123,124 In

recent decades, live virus vaccines have been less commonly

developed for reasons of time constraints and lack of effort due

to expense, potential safety, and difficulties in quickly adapting

to antigenic drift; however, we believe this potentially powerful

approach must be energetically pursued.

With respect to vaccine antigen (immunogen) configuration, it

is important to ask whether vaccines that elicit immunity to

specific conserved epitopes can create complex protective

immunity equivalent to that seen with more complex antigen

presentations, such asmulti-antigen cocktails, andwhether vac-

cines that decouple antigen components, such as influenza HA/

NA and HA/stem125 can reliably increase antigenicity. It is also of

note that for some non-respiratory viruses, such as dermally

inoculated (mosquito) systemically infecting flaviviruses—which

include yellow fever virus, dengue virus, Zika virus, and Japa-

nese encephalitis virus—complex cross-reactive immunity

based on shared epitopes on related viruses and viral strains,

when encountered sequentially, can elicit broad protection

against somewhat distantly related viruses, associated with

anamnestic antibody responses.126 Similarly, an experimental

multi-subtype intranasal influenza vaccine elicits experimental

protective immunity to influenza A virus subtypes absent in the

vaccine itself.127 What are the viral and immunologic bases of

these powerful, cross-protective phenomena, and can they be

replicated with mucosal respiratory vaccines? How can we iden-

tify determinants of multi-antigen relatedness and complexity

sufficient to make vaccines of greater breadth against

different-but-related viral types?

A closely related question is whether vaccines that generate im-

mune responses only against single critical epitopes conserved

across virus strains and subtypes, or a limited number of such epi-

topes, can perform as well as vaccines that elicit broad humoral

and cell-mediated responses against multiple epitopes. Although

such conserved epitopes seem ideal candidates, vaccines based

on this approach have not been particularly successful. The HIV

conserved gp120 Muster-Katinger epitope, the influenza M2 pro-

tein, and conserved influenza virus stem epitopes, all have been

considered promising candidates for vaccines but have not yet

been shown to elicit strong protective immunity in clinical studies,

although many candidates are at preclinical or only early clinical

stages of development.128–133 These findings emphasize that

host immune responses are complex and inter-related and that

making broadly protective vaccines will be challenging.

Vaccine routes, doses, and re-vaccination schedules must be

carefully considered, including routes of vaccination that maxi-

mize development of mucosal immune memory B and T cells

as well as sIgA; the possible differential advantages of upper
Cell Host & Microbe 31, January 11, 2023 151
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respiratory, lower respiratory tract, and systemic vaccina-

tion44,76,134–141; or optimized combinations of these. Attempting

to control mucosal respiratory viruses with systemically adminis-

tered non-replicating vaccines has thus far been largely unsuc-

cessful, indicating that new approaches are needed. For example,

during times of significant viral circulation within human popula-

tions, can better protection be achieved with repeat dosing,

or by sequential mucosal and systemic vaccination? Is frequent

re-boosting a viable vaccine option, e.g., via self-administered

home nasal vaccines? Also to be considered are possible

ancillary roles for prophylactic antivirals, including ‘‘programma-

ble antivirals’’ targeting conserved structures,142 antibodies,

including therapeutic IgA143 and innate immunity stimulators as

adjuncts to imperfect vaccines. It remains tobe seen if vaccination

and prophylaxis can be effectively combined at the popula-

tion level.

These provocative questions should all be considered as we

work to optimize vaccination strategies. One intriguing approach

to pursue, as noted above, would be making vaccines that

stimulate innate immunity50 which might be ideally suited to

‘‘hit and run’’ infections by mucosal respiratory viruses, which

characteristically infect, spread locally, and are transmitted to

others before adaptive immune responses capable of controlling

them can be mounted. Finally, there are currently limited

options for mucosal vaccine adjuventation.82,144 If data support

that mucosal vaccine adjuventation is needed and proves

possible, we will need to assess potential pitfalls, including

possible toxicity and side effects of repeated high-dose

mucosal immunization/adjuventation, and how best to study it

in humans.

VACCINATED HOSTS AND HOST RISK GROUPS ARE
MANY AND HETEROGENEOUS

A key challenge for next-generation vaccines is determining if

one-size-fits-all vaccines or vaccines targeted to key risk groups

will be useful. It is inevitable that various human risk groups may

require different vaccines or vaccine formulations. For example,

we know that RSV infections are best prevented by humoral im-

munity in children but by cell-mediated immunity in the elderly.136

Moreover, children may require different vaccine doses than do

young adults, who in turn may need different doses than do the

elderly with narrowed B cell and especially T cell repertoires to

viral antigens.136

Indeed, it seems likely that respiratory vaccines that fail to elicit

robust cell-mediated immunity may be suboptimal for the

elderly—but also that vaccines that elicit stronger cell-mediated

responses could also increase the risk of immunopathogenic ef-

fects. If they do, can optimal trade-offs be found? The elderly are

the most important litmus test risk group for vaccine prevention

of influenza, SARS-CoV-2, RSV, and other respiratory viruses

because they aremost likely to suffer severe and fatal outcomes,

and least likely to respond to vaccination, factors that make

successful vaccination of older people a benchmark for other

groups. It will also be important to learn more about genetic dif-

ferences between individuals related to mucosal viral antigen

sensing, predisposition to disease severity, and vaccine protec-

tion; for example, variations in IFITM3145 and other IFN pathway-

associated genes, as much evidence suggests that severe viral
152 Cell Host & Microbe 31, January 11, 2023
respiratory disease often reflects host genetic susceptibility

factors.16,51,146,147
PUBLIC HEALTH CONSIDERATIONS RELATING TO
NEXT-GENERATION RESPIRATORY VACCINES MUST
CONTRIBUTE TO SHAPING VACCINE DESIGN,
INCLUDING VACCINE SCHEDULE, ROLE OF BOOSTING,
FREQUENCY OF VACCINATION AND DURATION/
COMPLETENESS OF PROTECTION, SIDE EFFECTS,
AND PUBLIC ACCEPTANCE

Once improved vaccines are developed, vaccine recipes and

schedules will need to be optimized to best elicit durable protec-

tive mucosal immunity, especially with multivalent or boosted

vaccines, for which antigen immunodominance and balance be-

tween humoral and cell-mediated immune responses may be

complex.

With regard to public health usefulness and acceptance, it will

be important to consider roles for high dose or frequently boosted

vaccine antigens, mixed-sequential vaccines (e.g., prime-boost

with different vaccines), and whether these approaches will be

accepted by providers, regulators, and the public. The observa-

tion that repeated infant exposures to RSV reduces severe dis-

ease upon subsequent infection,148 coupled with experimental

data, suggest that respiratory vaccine timing and frequency can

be important.19 Indeed, a recent controversial theory posits that

the key determinant of immune/vaccine protection is not immune

memory and recall but repeated antigenic exposures.149 This pro-

posal seems to be contradicted by many observable phenomena

but is at the same time consistent with the observation that main-

tenance ofmemory T cells in the lungs is associatedwith repeated

antigenic exposures.82 Because of its implications for vaccinol-

ogy, this question can and should be studied experimentally. It

also prompts reconsideration of many accepted approaches,

such as one-time annual influenza vaccination at the beginning

of influenza seasons.

We also need to ask whether there are other vaccine ap-

proaches that should be considered, such as sequential seasonal

vaccinations and supplemental mucosal vaccines to stimulate

specific upper respiratory immunity, or non-specific innate immu-

nity. Such approachesmight include prime-boost approaches, for

example, mixing elicitation of systemic and mucosal immunity,

perhaps with prime systemic vaccination followed by a boost

with intranasal vaccination or vice versa.35,82,150 Beyond intra-

nasal vaccination, we will need to more fully explore responses

to vaccination in other respiratory immune compartments, such

as eye-drop conjunctival vaccination117 and particularly aerosol

vaccination for certain respiratory viruses, as suggested by

human and animal experimental studies for influenza and other

respiratory viral diseases.44,135
CONCLUDING REMARKS

Durably protective vaccines against non-systemic mucosal res-

piratory viruses with high mortality rates have thus far eluded

vaccine development efforts.

Challenges to developing next-generation respiratory vaccines

are many and complex (Table 2). We must better understand why

multiple sequential mucosal infections with the same circulating
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respiratory viruses, spread out over decades of life, fail to elicit

natural protective immunity, especially with viruses that lack sig-

nificant antigenic drift (e.g., RSV and parainfluenzaviruses),17–19,22

if we are to rationally develop vaccines that prevent them. We

must think outside the box to make next-generation vaccines

that elicit immune protection against viruses that survive in human

populations because of their ability to remain significantly outside

of the full protective reach of human innate and adaptive im-

munity.

Past unsuccessful attempts to elicit solid protection against

mucosal respiratory viruses and to control the deadly outbreaks

and pandemics they cause have been a scientific and public

health failure that must be urgently addressed. We are excited

and invigorated that many investigators and collaborative

groups are rethinking, from the ground up, all of our past as-

sumptions and approaches to preventing important respiratory

viral diseases and working to find bold new paths forward.
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