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Abstract: COVID-19 has an extensive impact on Homo sapiens globally. Patients with COVID-19
are at an increased risk of developing pulmonary fibrosis. A previous study identified that myofi-
broblasts could be derived from pulmonary endothelial lineage cells as an important cell source that
contributes to pulmonary fibrosis. Here, we analyzed publicly available data and showed that
COVID-19 infection drove endothelial lineage cells towards myofibroblasts in pulmonary fibrosis
of patients with COVID-19. We also discovered a similar differentiation trajectory in mouse lungs
after viral infection. The results suggest that COVID-19 infection leads to the development of pul-
monary fibrosis partly through the activation of endothelial cell (EC)-like myofibroblasts.
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1. Introduction
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fibrosis of the liver, kidneys, heart, and lungs where they persistently produce unwanted
extracellular fibrotic matrix, including fibrillar collagens, fibronectin, and other fibrotic
proteomes.

Pulmonary ECs are critical components of lung tissue. The absence of ECs causes
undeveloped lungs and endothelial defects that disable lung repair after injury [8]. In a
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the publicly available single-cell RNA sequencing (scRNA-seq) data of patients with se-
vere pulmonary fibrosis after COVID-19 infection [10]. The results showed a robust eleva-
tion in EC-like myofibroblasts in these cases and identified COVID-19 infection as a force
that drives ECs to EC-like myofibroblasts and myofibroblasts.

2. Results

2.1. Analysis of scRNA-Seq Reveals That COVID-19 Infection Drives ECs towards EC-like
Myofibroblasts and Myofibroblasts and Contributes to Pulmonary Fibrosis of
COVID-19 Patients

To examine the effect of COVID-19 infection on pulmonary endothelial lineage cells,
we analyzed publicly available data, which contained one pulmonary scRNA-seq dataset
from ten normal human lungs and three patients with COVID-19-related pulmonary fi-
brosis [9]. The Uniform Manifold Approximation and Projection (UMAP) revealed signif-
icant alterations in the composition of pulmonary endothelial lineage cells in these pa-
tients (Figure 1a). The percentage of EC-like myofibroblasts that expressed both endothe-
lial and myofibroblast markers, ACTA2, CCN2, POSTN, COL1A1, COL3A1l EN1, and
PDGFRa [11-14] (cluster 7), and myofibroblasts (cluster 8) were robustly increased in
these patients (Figure 1a—c). The percentages of different EC types were altered. EC 2 (clus-
ter 1) and capillary EC 2 (cluster 6) were increased. EC 1 (cluster 0) and EC 3 (cluster 2),
capillary ECs 1 and 3 (clusters 3 and 5), and arterial ECs (cluster 4) were decreased (Figure
la—c). Interestingly, the cell differentiation trajectory projected a clear direction that orig-
inated from capillary EC 1 (cluster 5) to capillary EC 2 (cluster 6), towards EC-like myofi-
broblasts (cluster 7), and ending with myofibroblasts (cluster 8) (Figure 1d). COVID-19
infection elevated capillary EC 2 about two-fold to promote the transition from ECs to
myofibroblasts (Figure 1c). Following this trajectory direction, gene expression dynamics
showed a decrease in endothelial markers with an increase in myofibroblast markers (Fig-
ures le and S1). The upregulated CCN2 and POSTN in EC 1 and EC 2 suggested that
COVID-19 infection induced an excess production of extracellular matrix in ECs and con-
tributed to fibrosis [15,16]; however, the differentiation of EC 1 and EC 2 were not con-
nected to myofibroblasts (Supplemental Figure S2). Previous studies have shown that
COVID-19 could trigger a cytokine storm in lung tissues [17-21]. We analyzed the expres-
sions of cytokines, such as IL1{3, IL6, IL11, and IL33. We found that expressions of IL1f3,
IL6, and IL11 were very low in ECs and EC-derived myofibroblasts, and there was no
change in IL33 expression due to COVID-19 infection in these cell clusters (Figure 1b).
This is consistent with previous reports where other cell types are responsible for cytokine
secretion in COVID-19 infected lungs, such as immune cells [17-21]. Together, the results
suggested that COVID-19 caused a cell transition from ECs towards EC-like myofibro-
blasts and myofibroblasts to contribute to pulmonary fibrosis in COVID-19 patients. The
analysis also identified an induction of MGP in EC 3, capillary ECs 1 and 2, EC-like myo-
fibroblasts, and myofibroblasts (Figure 1b). A previous study suggested that MGP regu-
lates the activity of Bone Morphogenic Protein-1 (BMP-1) and controls the differentiation
of EC-like myofibroblasts [9]. Here, the induction of MGP in ECs, EC-like myofibroblasts,
and myofibroblasts indicated that the activation of this differentiation pathway by
COVID-19 infection might induce MGP to regulate this unwanted activation.
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Figure 1. SCRNA-seq identifies excess EC-like myofibroblasts differentiating towards myofibro-
blasts in pulmonary fibrosis of COVID-19 patients. (a) UMARP for the cell populations subclustered
from the whole population of pulmonary cells. Arrows indicate the differentiation trajectory with
alterations in cell compositions. (b) Violin plots of gene expression of lineage markers. Fn1, fibron-
ectin 1. (¢) Cell compositions of different populations in lungs of healthy humans or COVID-19 pa-
tients. (d) Pseudotemporal trajectories of the cell clusters. (e) The expression of genes along the sin-
gle cell trajectories.

2.2. Analysis of scRNA-Seq Uncovers That Influenza A Viral Infection Drives ECs towards
EC-like Myofibroblasts

To determine if other viral infections affected pulmonary endothelial lineage cells,
we analyzed another set of publicly available scRNA-seq data, which were obtained from
mouse lungs with the influenza A viral infection [22]. We analyzed the endothelial lineage
cells. The UMAP identified five EC clusters (clusters 0, 1, 3, 4, and 6) and three clusters of
EC-like myofibroblasts 1, 2, and 3 (clusters 2, 5, and 7) (Figure 2a—c). The composition of
EC-like myofibroblasts (clusters 2, 5, and 7) was dramatically increased after one day of
viral infection and gradually increased as the infection continued (Figure 2d). EC-like my-
ofibroblasts 1, 2, and 3 expressed endothelial markers and different levels of myofibroblast
markers, suggesting that these cells were undergoing the transition to myofibroblasts (Fig-
ures 2b,c and S3). EC-like myofibroblast 1 (cluster 5) expressed Acta2, Tagln, Postn,
Collal, and Col3al but showed no expression of Pdgfra and Fibronectin 1 (Fnl),
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suggesting these cells were in early transition towards myofibroblasts. EC-like myofibro-
blast 2 (cluster 7) expressed less Acta2, Tagln, Collal, and Col3al but expressed more
Pdgfra and Fnl, suggesting these cells were in mid-transition towards myofibroblasts. EC-
like myofibroblast 3 (cluster 2) expressed more Pdgfra, Fnl, Collal, and Col3al but had
no expression of Acta2 and Tagln, suggesting that these cells were in a late transition to
myofibroblast (Figure 2c). Compared to a mock infection, the cell differentiation trajectory
after a 3-day infection confirmed the pathway from EC-like myofibroblasts 1 to 2, ending
with 3 (Figure 2e). The percentages of ECs were again altered. The percentages of ECs 1,
2, and 4 (clusters 0, 1 and 4) were decreased and ECs 3 and 5 (clusters 3 and 6) were in-
creased (Figure 2d), suggesting that specific EC populations contributed to the EC-like
myofibroblasts. The cell differentiation trajectory along the time course of viral infection
suggested that EC-like myofibroblasts 1, 2, and 3 were derived from EC 2 (Figure 2e,f).
The analysis also showed a specific pattern of MGP expression in EC 2 and EC-like myo-
fibroblasts 1, 2, and 3 along the time course of infection (Figure 2b), again supporting that
MGP may regulate the transition from ECs to EC-like myofibroblasts.
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Figure 2. ScRNA-seq reveals ECs differentiating towards myofibroblasts in mouse lungs after influ-
enza A viral infection. (a) UMAP for the cell populations subclustered from CD45-pulmonary cells
along the time course of influenza A viral infection. Arrows indicate the differentiation trajectory
with alterations in cell compositions. (b) Violin plots of the gene expression of VE-cadherin, CD31
and MGP in subclusters. (c) Violin plots of the gene expression of the myofibroblast lineage markers.
Arrows indicate the markers of different stages of myofibroblast differentiation. (d) Cell composi-
tions of different EC lineage populations in mouse lungs along the time course of influenza A viral
infection. (e, f) Pseudotemporal trajectories of the cell clusters at day 0 (mock infection) and 3 after
influenza A viral infection.

3. Discussion

While we have survived the worst of the COVID-19 pandemic, COVID-19 still poses
a significant threat to people all over the world by causing injuries to multiple organs.
Severe pulmonary fibrosis after COVID-19 infection has become a critical issue for the
late-stage and long COVID-19 patients. Unfortunately, in some cases, lung transplantation
may be the only clinical option [9]. Previous studies suggested that the inflammatory
storm triggered by a COVID-19 infection activates an excess of myofibroblasts resulting
in pulmonary fibrosis [23]. Here, we showed a clear increase in EC-like myofibroblasts,
which transition towards myofibroblasts in pulmonary fibrosis of COVID-19 patients. We
previously identified that excess TGF-beta drives EC-like myofibroblasts towards myofi-
broblasts, thereby contributing to fibrosis [9]. We argue that over-expressed pulmonary
TGEF-beta after COVID-19 infection could be the key driver in this case. COVID-19 patients
with pulmonary fibrosis show an accumulation of KRT17* epithelial cells, which express
high levels of TGF-beta [9]. Inmune cells responding to COVID-19 infection are also re-
ported to produce a large amount of TGF-beta [24]. In addition, other pulmonary cells
injured by COVID-19 may secrete more TGF-beta aimed for repair [24]. Excessive TGF-
beta produced from all these cellular sources is able to alter the micro-environment and
thus drive ECs and EC-like myofibroblasts towards unwanted myofibroblast fates. In this
study, similar differentiation trajectories of ECs and EC-like myofibroblasts were found
in mouse lungs after influenza A virus infection. The results suggest that the contribution
of ECs and EC-like myofibroblasts to fibrosis after a variety of viral infections may have
similar mechanisms.

We have shown that the lack of MGP caused an aggressive differentiation of EC-like
myofibroblasts towards myofibroblasts [9]. We discovered that MGP binds to BMP-1 and
inhibits its activity in activation of TGF-beta [9]. In this analysis, we identified the induc-
tion of MGP in the differentiation trajectory from ECs to EC-like myofibroblasts and my-
ofibroblasts. It would be interesting to further investigate the alteration in activity of pul-
monary BMP-1 after COVID-19 infection. Berbamine has been reported to prevent EC-like
myofibroblasts from transitioning into myofibroblasts and reducing the pulmonary fibro-
sis in animal models [9]. Berbamine is a compound extracted from plants and can be pur-
chased as a supplement. It would be interesting to study the effect of berbamine on the
pulmonary fibrosis of COVID-19 patients.

4. Methods
Single Cell RNA-Seq Analysis

The EC lineages derived from ten controls, and three COVID-19 patients were used
for further analysis. CD45-CD31+ and CD45-VE-cadherin+ cells of whole mouse lungs
were analyzed 1-, 3-, and 6-days post influenza A virus infection and mock infection.
Scanpy v1.9.3 was used to process human data, and R package Seurat (v4.3.0) was used to
process mouse data. Human data were trained using a deep learning neural network
model, scvi.model.SCVI, from single-cell Variational Inference (scVI) tools. Dimension re-
duction using UMAP, cell clustering, and data visualization were then performed. A sub-
set of data was further analyzed to construct single-cell trajectory using R package
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Monocle3 (v1.3.1). The cells were ordered along a learned trajectory, and the expression
dynamics of interested genes were plotted along the pseudotime.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms241411500/s1.
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