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Non-coding RNAs expression in SARS-CoV-2 infection:
pathogenesis, clinical significance, and therapeutic targets
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Lin Lu™**™ and Yanping Bao>%™

The coronavirus disease 2019 (COVID-19) pandemic has been looming globally for three years, yet the diagnostic and treatment
methods for COVID-19 are still undergoing extensive exploration, which holds paramount importance in mitigating future
epidemics. Host non-coding RNAs (ncRNAs) display aberrations in the context of COVID-19. Specifically, microRNAs (miRNAs), long
non-coding RNAs (IncRNAs), and circular RNAs (circRNAs) exhibit a close association with viral infection and disease progression. In
this comprehensive review, an overview was presented of the expression profiles of host ncRNAs following SARS-CoV-2 invasion
and of the potential functions in COVID-19 development, encompassing viral invasion, replication, immune response, and
multiorgan deficits which include respiratory system, cardiac system, central nervous system, peripheral nervous system as well as
long COVID. Furthermore, we provide an overview of several promising host ncRNA biomarkers for diverse clinical scenarios related
to COVID-19, such as stratification biomarkers, prognostic biomarkers, and predictive biomarkers for treatment response. In
addition, we also discuss the therapeutic potential of ncRNAs for COVID-19, presenting ncRNA-based strategies to facilitate the
development of novel treatments. Through an in-depth analysis of the interplay between ncRNA and COVID-19 combined with our

bioinformatic analysis, we hope to offer valuable insights into the stratification, prognosis, and treatment of COVID-19.
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INTRODUCTION
It is still a public health concern of the coronavirus disease 2019
(COVID-19) pandemic worldwide, three years after its outbreak.
Until July 12, 2023, the global cumulative number of COVID-19
confirmed cases rose to 767.7 million and the cumulative death
increased to nearly seven million, indicating that we must remain
vigilant against COVID-19. Furthermore, the pandemic has
inflicted a substantial attack to the global economy; most
countries encountered negative gross domestic product rates in
2020 based on estimations by the World Bank and International
Monetary Fund." The World Economic Situation and Prospects, an
United Nations’ latest report, suggests that prospects for a robust
global economic recovery remain bleak due to persistent
repercussions of the COVID-19 pandemic.? Therefore, it is still
critical to focus attention on COVID-19.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
a single-stranded positive ribonucleic acid (RNA) virus, is the
causative agent, and multiple variants have emerged, ranging
from alpha to omicron.? SARS-CoV-2, belonging to the Sarbecov-
irus subgenus of betacoronavirus, possesses a genomic RNA with
an average size of 26-32 kilobase and an outer shield composed of
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envelope (E), membrane (M), and spike (S) proteins.* This virus
primarily invades host cells through a combination with its
receptor protein, angiotensin-converting enzyme 2 (ACE2), lead-
ing to immune system damage, and increased inflammatory
factors release and even cytokine storms.*> The COVID-19 disease
presents with a diverse kind of clinical symptoms affecting
multiple systems, including respiratory, neuropsychiatric, cardio-
vascular, gastrointestinal, musculoskeletal and endocrine systems.
It is common overserving fever, cough, shortness of breath and
general malaise in these patients®’ In addition, a significant
proportion of recovered individuals experience long-term symp-
toms referred to as “long COVID”, which is defined by the World
Health Organization (WHO) as lasting for at least 2 months and
cannot be explained by an alternative diagnosis occurring usually
3 months from the onset of COVID-19. These long-term symptoms
may include fatigue, muscular weakness, dyspnea and neuropsy-
chiatric manifestations such as depression, anxiety and cognitive
deficits.®° Despite extensive global efforts dedicated to investigat-
ing SARS-CoV-2, our current understanding of its pathogenesis,
including clinical progression and effective treatments, remains in
progress.
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Fig. 1 The main ways for ncRNAs in modulating gene expression in SARS-CoV-2-infected cells. The main mechanisms of the ways in which
ncRNAs regulate gene expression are shown: a transcriptional regulation, b chromatin biology, ¢ translational regulation, d scaffolding,
e mRNA sponge, and f mRNA decay. Biorender was used to generate this figure

Non-coding RNAs (ncRNAs) serve as a critical regulator of the
genome, providing an insight to viral pathogenesis and thus to
developing antiviral therapeutics. NcRNAs constitute approxi-
mately 90% of RNAs in the human genome and participate in
both physiological and pathological processes.'® Among these
ncRNAs, the most studied types include microRNAs (miRNAs), long
non-coding RNAs (IncRNAs), and circular RNAs (circRNAs).""
MiRNAs are a type of short ncRNAs that mediate genes and
subsequent signaling by regulating the expression of other RNAs,
especially messenger RNAs (mRNAs). In contrast, IncRNAs, a kind
of ncRNAs with more than 200 nucleotides, can modulate the
transcription of neighboring or distant genes, as well as regulate
chromatin biology.'* The third major class of ncRNAs is circRNAs, a
novel class with a closed continuous loop structure. Studies about
the circRNAs function is still in progress, while many research have
found that circRNAs can function as miRNA sponges, even binding
multiple miRNA molecules and inhibit their roles.’® In a short brief,
the ways in which these ncRNAs modulate gene expression can be
summarized as follows (Fig. 1): (1) miRNA can target the mRNA to
regulate the cascades; (2) some IncRNAs can make an impact on
mMRNA stability and manage the translation of related mRNAs in
the cytoplasm; (3) some ncRNAs, such as IncRNAs and circRNAs,
can function as scaffolds that enable interactions with multiple
proteins; (4) some abundant circRNAs can bind miRNAs in the
cytoplasm, acting as miRNA sponges to prevent miRNAs from
binding their target mRNAs; and (5) some IncRNAs can recruit
proteins to mRNAs and mediate mRNA decay.'*'® It is currently
believed that ncRNAs may also play regulatory roles in the
pathogenesis of COVID-19.

What is noteworthy is that both humans and viruses can
produce ncRNAs, and virus-encoded ncRNAs can manipulate the
host cell machinery to facilitate viral genome expression and
protein production, as well as inhibit antiviral pathways."”
Extensive reviews have summarized the primary functions of
virus-encoded miRNAs/IncRNAs/circRNAs, including regulating
viral gene expression for latency control or activation transmis-
sion, and modulating the host immune system to create a
favorable intracellular environment for viral persistence.'®2°
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Currently, virus-encoded ncRNAs are mainly identified in deoxyr-
ibonucleic acid (DNA) virus infections, while few originate from
RNA viruses due to limited accessibility of host ncRNA biogenesis
machinery in nuclei for RNA virus.'” However, some investigations
have detected the virus-encoded ncRNAs expression after
infection with various coronaviruses such as Middle East
respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-1 as well
as SARS-CoV-2. For instance, Cai et al. discovered 3437 circRNAs
derived from SARS-CoV-2 in 2020 which were associated with
cholesterol metabolism processes and cellular responses to
oxidative stress.?’ Similarly, 40 viral miRNAs derived from the
SARS-CoV-2 genome was identified, which mostly targeted genes
of signaling pathway, epigenetics factors, tumor suppressors,
transcription factors, and various kinases.?? Despite the signifi-
cance of virus-encoded ncRNAs in modulating viral diseases and
their potential clinical applications, the mechanisms underlying
these ncRNAs, particularly those encoded by RNA viruses, remain
uncertain. Therefore, we did not delve further into this topic in our
review, which may represent a missing piece for comprehending
the interplay between hosts and viruses.

Given the pivotal role of host ncRNAs in viral pathogenesis,
there is promising potential to develop early identification,
differentiation predictor, and efficacious interventions based on
ncRNAs for managing the ongoing COVID-19 pandemic and
preventing long-term sequelae. This review is specifically aimed at
elucidating the expression profiles and functions of host ncRNAs
(miRNAs, IncRNAs, and circRNAs) in SARS-CoV-2 pathogenesis,
from viral invasion and replication to multiorgan deficits, and even
to long COVID. Additionally, we provide a comprehensive over-
view of current research investigating the efficacy of ncRNA-based
biomarkers and therapeutic approaches in relation to COVID-19
and long COVID.

DYSREGULATED EXPRESSION OF THE HOST NCRNAS IN
CoviID-19

In the present, the main approaches for measuring ncRNAs
expression can be divided into two types.> One method with low
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throughput is represented by quantitative real-time polymerase
chain reaction (RT-gPCR), northern blot, and in situ hybridization.
Among these, RT-gPCR is due to its inexpensive and sensitive
properties,>* now widely employed in clinical and basic research
for detecting single or a small number of ncRNAs.>> Moreover,
novel techniques have been developed based on the conven-
tional PCR method, such as droplet-based digital PCR (ddPCR),
which primarily relies on limited dilution, end-point PCR, and
Poisson statistics.?® DAPCR offers several advantages including
remarkable sensitivity and specificity, absolute quantification
without a standard curve, excellent reproducibility, and high
efﬁcienc%/, making it a valuable addition to measuring the
ncRNAs.*” The other type is a high-throughput technique such
as RNA sequencing and microarrays. Compared with the micro-
arrays which mainly pick up the known targets, the RNA
sequencing can generate comprehensive and high-quality data
that reveals unknown transcripts.’® Recently, the developing
single-cell RNA sequencing and spatial transcriptomics sequen-
cing technologies have made it possible that the RNAs expression
in individual cells can be accurately distinguished within their
native environment, exhibiting higher spatial specificity.?®

Numerous studies have been conducted to measure the
differentially expressed ncRNAs (DEncRNAs) in the host after
SARS-CoV-2 infection through RT-gPCR, sequencing or microarrays
(Table 1). Host miRNAs have garnered significant attention, with a
plethora of published clinical reports investigating their presence
in samples from individuals diagnosed with COVID-19. Despite the
limited research on the expression profile of IncRNAs and circRNAs
in the context of COVID-19, findings have revealed significant
alterations in hundreds or even thousands of these ncRNAs
among COVID-19 individuals. The majority of samples used to
extract host ncRNAs were derived from various types of blood
samples, including peripheral blood, peripheral venous blood,
serum, plasma, red blood cell-depleted peripheral blood, and
peripheral blood mononuclear cells (PBMCs).'”2°3* In addition,
other tissues, such as nasopharyngeal samples, saliva, urine, bone,
cerebrospinal fluid (CSF), and post-mortem lung biopsies, were
also analyzed.>>™*° Moreover, the expression profile of some
ncRNAs can present dynamic changes over time, from the acute
phase to post-acute, and even to the convalescence stage.*’*? In
the following parts, we introduce the expression profiles of host
miRNAs/IncRNAs/circRNAs after SARS-CoV-2 infection, and discuss
the possible ways for SARS-CoV-2 to modulate the host ncRNAs
expression.

SARS-CoV-2-associated DEncRNAs

miRNAs. A number of investigations have reported that the host
miRNAs expression is altered in COVID-19 individuals in contrast
to healthy controls, suggesting potential involvement of miRNAs
in the COVID-19 pathogenesis.*® In addition, the host miRNAs
expression can be influenced by disease severity, as evidenced by
comparisons between asymptomatic/mild and symptomatic
patients or among mild, moderate, and severe cases, highlighting
the remarkable potential of miRNAs in distinguishing the COVID-
19 severity through demonstrating the diverse landscape of
miRNAs in patients with varying disease severities.3' In addition,
the temporal sensitivity of the differentially expressed miRNAs
(DEmiRNAs) profile in the context of COVID-19 is evident. On one
hand, it exhibits dynamic changes within a few days of disease
onset, even changing between the acute stage (within 3 days) and
later period (>7 days), thereby indicating the potential to predict
symptoms characterized by rapid onset after SARS-CoV-2 infec-
tion.”**> On a broader temporal scale encompassing treatment,
convalescence, and rehabilitation stages, the expression pattern of
DEmiRNAs which resulted from SARS-CoV-2 infection also
demonstrates discernibility.*? Furthermore, SARS-CoV-2 infection
may lead to a distinct expression profile of host miRNAs
differentiated from those infected with other viruses. Compared
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to patients with influenza-associated acute respiratory distress
syndrome (influenza-ARDS), three upregulated miRNAs in the
serum were identified in severe COVID-19 patients, contributing to
deciphering the unique pathogenesis of SARS-CoV-2.*¢

Among the myriad of dysregulated miRNAs, certain ones have
undergone additional validation in diverse populations or through
alternative methodologies.**™*® Further, the abundance of PCR or
sequencing data facilitated a comprehensive analysis of the
expression profile of DEmiRNAs in COVID-19 patients. This enabled
us to identify DEmiRNAs that were repeatedly measured across
multiple studies and compare their expression patterns among
healthy controls, non-severe COVID-19 patients, and severe cases
(Supplementary Tables S1-3). Notably, certain miRNAs such as miR-
1246 and miR-106b-5p exhibited consistent differential expression
across various studies, providing further validation for the impact
exerted by SARS-CoV-2 on host miRNA landscape.***9>2

IncRNAs.  Differentially expressed IncRNAs (DEIncRNAs) have
been recognized in COVID-19 patients with varying disease
severities in comparison with healthy controls, as well as among
COVID-19 cases with different disease severities, indicating the
potential involvement of IncRNAs in the pathogenesis of this
disease.>>** The expression of host IncRNAs also exhibited
temporal sensitivity, either within an acute time frame (e.g., from
admission to 7 days later) or over a longer progression period (e.g.,
during treatment, convalescence, and rehabilitation).*>>> More-
over, DEINcRNAs can be detected in the recurrent COVID-19 cases,
evidenced by that nearly one thousand DEIncRNAs were identified
in the recurrent COVID-19 patients compared with the healthy
controls.®>* However, further investigations are worthy to deter-
mine whether there exist differences in IncRNAs expression
between individuals with a single SARS-CoV-2 infection and those
experiencing reinfection, as the number of infections may increase
the risk and disease burden, suggesting potential underlying
distinctions.>®

Insufficient research has been conducted to validate the
expression profile of IncRNAs in COVID-19 cases, despite the
identification of DEIncRNAs at a cellular level. There was a study
using single-cell RNA sequencing showing the DEIncRNAs in the
blood leukocytes in severe COVID-19 cases in comparison with the
healthy control, revealing the possible involvement of IncRNAs in
the disease development at a much finer spatial scale.””

circRNAs. The current research on differentially expressed
circRNAs (DEcircRNAs) in COVID-19 is limited, yet it may offer
valuable insights into the DEcircRNAs following SARS-CoV-2
infection and their presence across various samples from COVID-
19 patients. In the human lung epithelial cells infected with SARS-
CoV-2, more than five thousand circRNAs at various genomic
location were identified via genome-wide dynamic analysis.”® In
addition, in the whole-blood sample from recurrent COVID-19
cases, DEcircRNAs were also identified compared to the healthy
control>* The aforementioned investigations suggest that the
SARS-CoV-2 infection can disrupt the expression of host circRNAs
in blood, while a consistent dysregulation has also been observed
in the CSF, evidenced by a differential expression profile of
circRNAs identified in the CSF compared among COVID-19 case,
healthy controls, and cases with neurological disease.*® Consider-
ing the tissue- and cell-specificity of the circRNAs expression,
whether there is an overlap or difference in the types of
DEcircRNAs between the neural cells and blood cells also needs
more investigations for deeper understanding the systemic effects
of SARS-CoV-2, such as using the single-cell RNA sequencing and
spatial transcriptomics sequencing.

Ways for SARS-CoV-2 to alter host ncRNAs expression

Numerous reviews have provided detailed explanations on the
biogenesis of host miRNAs/IncRNAs/circRNAs.'%'>°9% Most host
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The development of viral sepsis, which may subsequently lead
to multiorgan dysfunction, is a matter of greater concern. Severe
lung injury, such as ARDS, represents the primary complication
induced by SARS-CoV-2. It has been observed that 15-30% of
hospitalized COVID-19 individuals will progress to develop COVID-
19-associated ARDS.®” In addition, a range of complications have
been demonstrated, including thrombotic events, myocardial
dysfunction, and arrhythmia, as well as neuropsychiatric dis-
orders.®® Despite the unclear mechanisms underlying these
complications in the context of COVID-19, current perspectives
on the pathophysiology of multiorgan failure following SARS-CoV-
2 infection primarily focus on direct viral tissue damage and
dysregulated host responses induced by the virus.®®

Many studies have demonstrated that host ncRNAs exhibit
differential expression patterns following SARS-CoV-2 infection
but also play a crucial role in various aspects of its pathogenesis.
Investigating the functions of ncRNAs in this process can
significantly facilitate our understanding of the interplay between
the SARS-CoV-2 and host. In the subsequent section, we present
some prominent examples of host ncRNAs which have been
identified with wet-lab or bioinformatic analysis in the context of
COVID-19 (Supplementary Table S4), providing a discussion about
how host ncRNAs contribute to COVID-19 pathogenesis through
an intricate interplay via direct or indirect action and anti- or pro-
viral effects, including viral invasion, replication, immune response
modulation, multiorgan deficits as well as long COVID (Fig. 2).

Impact on SARS-CoV-2 invasion

The invasion of SARS-CoV-2 into target cells involves more than
just the interaction between the S protein and its receptor ACE2.
The crucial step for virus is to enter the cellular membrane and
reach the cytoplasm of targeted cells. To overcome the inherent
repulsion between the virus and cell membrane, the S protein
must transition into a metastable state (a state prone to
transformation to a lower-energy state) before membrane fusion.*
Unlike SARS-CoV which relies on protease cleavage in target cells
for this transition, in SARS-CoV-2 cleavage of the S protein occurs
in two steps - first by furin in virus-producer cells (cleaving the S
protein into ST and S2 subunit) and then by proteases in target
cells (cleaving at the S2 subunit). During the second cleavage,
there are two routines utilized by SARS-CoV-2: (1) one dependent
on TMPRSS2 located on plasma membranes of target cells and (2)
the other reLying on cathepsin L located within endolysosome of
target cells.” In host cells co-expressing ACE2 and TMPRSS2,
TMPRSS?2 is responsible for cleavage of the S2 subunit, followed by
ACE2-mediated endocytosis that facilitates viral RNA release into
the cytoplasm for replication and uncoating.®’® However, in
cases of inadequate TMPRSS2 expression or absence of virus-ACE2
complex interaction with TMPRSS2, SARS-CoV-2 can be inter-
nalized through endocytosis into the endolysosome where
cathepsin L cleaves at the S2 subunit, leading to membrane
fusion and subsequent viral RNA release.”"”?

Despite the evidence from wet-lab about the role of host
ncRNAs in regulating the SARS-CoV-2 invasion are still scant, some
bioinformatics results indicate that some miRNAs and IncRNAs
may modulate the entry process via targeting the furin, ACE2 and
TMPRSS2.

Furin. Furin is a type | transmembrane protein that serves as a
proprotein convertase, ubiquitously expressed in pulmonary,
hepatic, and intestinal tissues.”®> In the context of COVID-19,
furin-mediated cleavage of the S1/52 boundary is essential for
virus-induced membrane fusion. This unique feature differentiates
SARS-CoV-2 from other Sarbecovirus and enables zoonotic
transfer to humans.”* A mutant SARS-CoV-2, which was lack of
the furin cleavage site, exhibited reduced S protein processing in
infected cells compared to parental SARS-CoV-2.”° Although direct
experimental evidence on the role of host ncRNAs in modulating
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furin after SARS-CoV-2 infection is lacking, a bioinformatics study
predicted that some host DEmiRNAs from infected cells can target
FURIN mRNA, which may be regulated by SARS-CoV-2 to create a
favorable environment for viral invasion.”®

ACE2. ACE2 is the main receptor for SARS-CoV-2 entry, while its
primary function in normal physiology is to convert angiotensin |
and angiotensin Il into angiotensin-(1-9) and angiotensin-(1-7),
respectively.”” In the lower lung, type Il alveolar cells is the major
location where the ACE2 expresses, while the ACE2 expression is
more pronounced in the upper bronchial epithelia and signifi-
cantly elevated in the nasal epithelium, particularly within the
ciliated cells.”® This distribution pattern aligns with the infection
gradient of SARS-CoV-2, wherein nasal ciliated cells primarily serve
as primary targets for viral infection during early stage.”® Severe
COVID-19 patients possibly exhibit increased expression of ACE2
due to certain inflammatory cytokines such as interleukin-1f3 (IL-
1B) and type | and Il interferons (IFNs), and the result is the
establishment of a positive-feedback loop, which facilitates viral
replication.”®#°

There are some ncRNAs serving antiviral role through inhibiting
the ACE2. MiR-1246, which shares homology with ACE2 and
targets its coding DNA sequence, has been identified as a negative
modulator of ACE2 expression.2’ Several studies have reported
consistent upregulation of miR-1246 in the plasma of COVID-19
patients in comparison with healthy controls.**>' Furthermore,
miR-1246 expression level may increase with COVID-19 severity, as
evidenced by consistent upregulation in severe patients com-
pared to non-severe patients,®"***? indicating that with COVID-19
exacerbation, miR-1246 expression may gradually increase to
prevent ACE2 expression and inhibit the viral invasion.®? In
addition, the increased miR-200c-3p may directly target the 3’
untranslated region (UTR) of ACE2 and inhibit its expression in the
epithelial cells.>***#2 Similarly, other downregulated miRNAs
namely miR-125-5P, miR-23b-5p and miR-769-5p can binds with
3’ UTR of ACE2 to block the virus entry and attachment.®

In line with the miRNAs changes, there were a lot of
dysregulated DEIncRNAs involved in SARS-CoV-2 invasion. The
INcRNA GATA-binding protein 5 (GATA5), which is significantly
elevated in severe cases, can also inhibit ACE2 gene expression to
block the virus entry into host cells.>*

TMPRSS2. The TMPRSS2 protein is classified as a type |l
transmembrane protein and exhibits serine protease activity.
However, its precise physiological function remain poorly under-
stood. Inhibition of TMPRSS2 through a small-molecule protease
inhibitor can significantly prevent SARS-CoV-2 entry in both
human lung epithelial cells and a transgenic mouse model of
severe COVID-19, demonstrating the essential role of TMPRSS2 in
SARS-CoV-2 invasion.2* In comparison with healthy controls, there
was a marked increase in the expression of TMPRSS2 in lung
epithelial cells from COVID-19 patients, particularly club and
ciliated cells.2> Despite that the evidence about the relationship
between host ncRNAs and TMPRSS2 after SASR-CoV-2 infection is
still limited, it has been mechanistically validated that miR-98 can
directly bind the 3" UTR of TMPRSS2 in human endothelial cells
including human lung microvascular endothelial cells and human
umbilical vein endothelial cells, and subsequently can block the
virus entry.%¢

Impact on SARS-CoV-2 replication

The overall life circle of SARS-CoV-2 includes not only the viral
entry and endocytosis, but also the viral replication. After entry
into the host cells, the virus produces multiple copies to spread
inside the host body, following by the translation of the viral
proteins or polypeptides. The SARS-CoV-2 genome harbors
multiple open-reading frames (ORFs), encoding 16 nonstructural
proteins (nsp 1-16) and necessitating the involvement of
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Fig. 2 The functions of host ncRNAs in the pathogenesis of COVID-19 and representative ncRNAs. a Possible COVID-19 disease course is
depicted as differentially colored curves of disease severity over time.?'® b During the progression of this disease, viral invasion serves as the
initial step. Following cleavage of the S protein into S1 and S2 subunits by furin in viral producer cells, the SARS-CoV-2 virus can effectively
bind to the ACE2 receptor. Subsequent cleavage occurs either through TMPRSS2 or via endocytosis into the endolysosome. Upon entry into
the cytoplasm, it undergoes replication to generate multiple copies for dissemination within the host organism. This is accompanied by
translation of viral proteins or polypeptides, assembly, and eventual release into extracellular spaces. The released virus can undergo further
reorganization, triggering release of inflammatory signaling molecules from infected cells and alveolar macrophages, while also recruiting
T cells, monocytes, and neutrophils. Disease exacerbation leads to increased fluid accumulation in alveolar spaces and potentially cytokine
storms that induce hyperinflammation. In late stages of illness, some patients may exhibit acute or persistent multiorgan deficits involving
organs such as the brain, lungs, and heart. ¢ In the context of COVID-19, several host miRNAs/IncRNAs/circRNAs have been identified through
wet-lab experiments or bioinformatic analysis, elucidating their roles in various aspects of COVID-19 pathogenesis, encompassing viral
invasion, replication, immune response modulation, multiorgan failure and long COVID. Biorender was used to generate this figure

numerous proteins to sustain its replication cycle.®” Similar as the
mRNAs, the viral genome also includes a 5’ cap structure along
with a 3’ poly (A). Of these, the 5' cap structure contains the
sequence and UTR with stem-loop structures for RNA replication
and translation. The 3’ UTR also embraces the structures required
for viral RNA replication. In addition, the genome structure, 5-UTR-
replicase-S-E-M-N-3" UTR-poly (A) tail, can create a suitable
environment for virus replication and transcription.

The host ncRNAs have been highlighted in modulating the
replication of SARS-CoV-2, possibly through directly targeting
the viral genome or through virus-mediated alteration in the
host transcriptome. Plasma miRNA profiling showed that the
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host miR-148a-3p can target virus genome, binding to the
ORF1a, E, S and M genes and affecting virus entry and
replication.®® Several downregulated miRNAs, including miR-
497-5p, miR-21-3p and miR-195-5p, can target the coding strand
of SARS-CoV-2, and lately inhibit its replication.?° In addition,
some regulatory networks are controlled by the circRNA/
IncRNA-miRNA-mRNA regulatory axis in the infected cells.
Relevant research has reorganized a quintuple regulatory
network including one miRNA (miR-124-3p), two circRNAs
(ppp1r10 and C330019GO7Rik) one IncRNA (Gm26917) and
one hub gene Ddx58 in SARS-CoV cells. Ppp1r10 and
C330019G07Rik can act as sponges for miR-124-3p to suppress
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Ddx58 degradation, resulting in the reduction of SARS-CoV-2
replication.®®

Impact on immune response to SARS-CoV-2

Uncontrolled viral replication may trigger multiple immunopatho-
logic conditions in host cells. As a result, SARS-CoV-2 can
effectively inhibit or delay the induction or function of type |
and IIl IFNs by infected cells, thereby circumventing or postponing
the onset of intracellular innate immune responses and contribut-
ing to immunopathology.”’™** This temporal delay in innate
immune response is sufficient to cause asymptomatic infection or
clinically mild disease, as T cells and antibody responses can
develop and control the infection.>*?> However, if there is a
prolonged delay in priming the adaptive immune response due to
impaired innate immunity, SARS-CoV-2 could undergo extensive
replication in the upper respiratory tract and lungs. Consequently,
innate immunity takes over adaptive immunity by amplifying its
response to control the virus but leads to elevated levels of innate
cytokine/chemokine molecules, triggering a phenomenon known
as “cytokine storm”, along with dysregulated innate and adaptive
immune cells observed in severe and critical disease.”>® During
this process, certain inflammasomes such as Nod-like receptor
family pyrin domain-containing 3 (NLRP3) inflammasome would
be activated, inducing release of pro-inflammatory factors and cell
death.”

Host ncRNAs play a crucial function in regulating the innate
and adaptive immune response.”®'%° Although miRNA, IncRNA,
and circRNA have distinct mechanisms of action, their roles in the
host immune response to viral infection can be summarized as
follows: (1) modulation of the IFN signaling pathway and
inflammatory factors; (2) regulation of immune cell development
and function, such as B- and T cells. In the case of SARS-CoV-2
infection, what is noteworthy is that the virus can also manipulate
host ncRNAs for its own replication and infection by acting as a
sponge or magnet to absorb or hijack ncRNAs involved in the
immune system.'?’

The IFN pathway. The deficiency of IFN immunity in the
respiratory tract may result in the SARS-CoV-2 spread, causing
pulmonary and systemic inflammation. Some host ncRNAs play
critical roles in modulating the IFN pathway.

Let-7b-5p can target the phosphodiesterase 12 (PDE12) which
seems to regulate the IFN response. Enhanced resistance to virus
infection was found through inhibition of the PDE12, including
encephalomyocarditis virus, human rhinovirus, and respiratory
syncytial virus.'® However, with the aggravation of the COVID-19,
let-7b-5p showed downregulation in severe COVID-19 cases,**>°
in line with the abnormal type | IFN response in several and critical
patients, featured with the absence of both IFN-f and IFN-a
production and activity,'® suggesting a role of let-7b-5p in the
impaired IFN deficiency and reduced resistance to SARS-CoV-2 via
modulating the PDE12.

There is a significant correlation between the differential
expression of IncRNAs with protein-coding genes associated with
the immune system. The IncRNA LINC02384 can regulate IFN-y
expression to induce antiviral response and innate immune
response.'® In addition, analysis of common miRNAs, circRNAs
and mRNAs datasets revealed that hsa_circ_0080135 had multiple
binding sites for 86 miRNAs, which were related to 15 mRNAs
involved in cytokine storm including IL-16, IL-7, IL-10, IL-12B, IL-13,
IL-17A, IL-33, IFN-y, C-C motif chemokine 2 (CCL2), C-X-C motif
chemokine 6 (CXCL6), CXCL8, CXCL10, fibroblast growth factor
(FGF2), FGF14 and macrophage inflammatory protein. On the
other side, hsa_circ_0080135 also acted as ceRNA of miR-769-3p
targeting IL-12B, IFN-y, CXCL6 and CXCL8 to regulate cytokine
storm.'®> By targeting ncRNAs, plenty of dysregulated cytokines
during SARS-CoV-2 infection were involved in the circRNA/IncRNA-
miRNA-mRNA axis.
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Inflammatory cascades. After SARS-CoV-2 infection, both pro-
inflammatory and anti-inflammatory cytokines exhibit a dramatic
elevation, and their expression and function can be mediated by
host ncRNAs.'® One example is miR-106b-5p, which is a
modulator of the lysine acetyltransferase 2B (KAT2B).'®” Either
pharmacological inhibition or knockdown of KAT2B resulted in
decreased level of IL-10 in normal colonic epithelial cell line.'®® In
COVID-19 cases, KAT2B showed upregulation, while miR-106b-5p
was downregulated, suggesting a possible routine that the
decreased miR-106b-5p induced by SARS-CoV-2 results in high
expression of KAT2B and promotes the IL-10 level %107

LncRNAs, particularly nuclear paraspeckle assembly transcript 1
(NEATT) and metastasis-associated lung adenocarcinoma tran-
script 1 (MALAT-T1), have been shown to play critical roles in the
expression of pro-inflammatory cytokines. In patients infected
with higher viral loads of SARS-CoV-2, a greater proportion of
upregulated transcripts were represented by IncRNAs, which
functionally correlated with lymphocyte activation and cytokine
signaling.’® NEATT shows high correlation with the cytokines''®
and can serve as an immunoregulator on promoting the
monocyte-macrophage differentiation.'"’ Further, knockdown of
NEATT in the human monocyte-macrophage cells inhibited the
apoptosis and reduced the expression of cyclooxygenase-2 (COX-
2) and several pro-inflammatory cytokines, such as the IL-6 and
tumor necrosis factor a (TNF-a), possibly through targeting miR-
342-3p.""? In the COVID-19 cases, NEATT was upregulated,®®°%'"3
and consistently, miR-342-3p was downregulated,”® indicating
that overexpressed NEATT may facilitate the pro-inflammatory
process through repressing miR-342-3p after SARS-CoV-2
infection.

CircRNAs also acts a pivotal function in the formation of pro-
inflammatory cytokines. Compared with the healthy controls,
hsa_circ_0000479 exhibited increased level in COVID-19 patients,
along with the upregulation of retinoic acid-inducible gene | (RIG-
) and IL-6, and downregulation of miR-149-5p."'* Overexpressed
hsa_circ_0000479 can indirectly stimulate the RIG-I through
binding to miR-149-5p, and the activated RIG-I would trigger the
expression of IL-6."">"'6 Therefore, a hsa_circ_0000479 composed
circRNA-miRNA-mRNA regulatory axis may serves a critical
function in mediating the pro-inflammatory cytokines expression
after SARS-CoV-2 infection.

T cells development and function. After almost all SARS-CoV-2
infections, T-cell responses can be detected. In a study recruiting
116 hospitalized COVID-19 patients with varying severity, mass
cytometry of whole blood found decreased overall T cells and
increased activated and cytotoxic CD8" T cells in more severe
cases, indicating a dysregulation of T-cell response in severe
COVID-19 disease.''” The two upregulated DEIncRNAs HIF1alpha-
antisense RNA 1 (HIF1A-AS-1) and retinoid acid receptor-related
orphan receptor alpha-antisense 7 (RORA-AS-7) were enriched in
differentiation of T-helper cells, which can regulate T-cell
differentiation, while the detailed underpinnings merit more
investigations.*?

Impact on multiorgan deficits and long COVID

COVID-19 is recognized as a respiratory disease that causes
significant pulmonary damage, but with disease progression,
numerous extrapulmonary symptoms have been reported in
patients, affecting various systems such as cardiovascular,
neurological and endocrinological. There are various hypotheses
about the pathogenesis of multiorgan failure in COVID-19, such as
dysregulated immune response, viral toxicity, and throboinflam-
mation.%11811° Of these, direct viral invasion-induced toxicity
may be unique, due to organotropism of SARS-CoV-2 toward the
respiratory tract, neurologic, myocardial, pharyngeal and gastro-
intestinal tissues along with wide expression of ACE2 and
TMPRSS2 in the host body.'?®'?' COVID-19 progression is not
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limited to moderate or severe cases, as recent studies have
demonstrated the persistence of a range of symptoms following
acute infection, commonly referred to long COVID."?? Some
hypotheses about the long COVID pathogenesis have been
proposed, such as impaired autoimmunity, viral remnants,
dysregulated dysbiosis, and tissue damage.” However, the
detailed mechanism that underlies long COVID remains unclear.

In light of the organ-specific functions exhibited by host
ncRNAs, we elucidate their respective roles across different
anatomical systems below, and the following findings suggest
that the inflammatory signaling and tissue development both
represent the predominant targets for host ncRNAs in regulating
the progression of organ failures within the context of COVID-19.

Respiratory system. For COVID-19 cases, up to 20% will develop
to a severe form, featured with the occurrence of COVID-19-
associated ARDS, severe pneumonia, and pulmonary fibrosis.'?*
Furthermore, several investigations have reported persistent lung
injury even after clearance of SARS-CoV-2. A meta-analysis
examining chest computed tomography (CT) findings about
12 months post COVID-19 revealed that around 33% of patients
still exhibited residual lung abnormalities on CT scans. These
findings suggest that SARS-CoV-2 infection possibly leads to
prolonged lung injury.'®* Current perspectives on the pathogen-
esis of lung injury in COVID-19 primarily focus on direct viral
damage and host immune response.'?*

As previously mentioned, dysregulated immune systems can
trigger a cytokine storm that can damage alveolar structures,
allowing the virus to invade vascular endothelial cells from the
blood-air barrier. With the disease advances, endothelial dysfunc-
tion results in increased rigidity and susceptibility of pulmonary
vessels., ultimately resulting in thrombosis and microvessels
blockage in alveolar capillaries, potentially causing hypoxemia or
pulmonary hypertension.'?® The circulating miR-486-5p, which is
decreased in COVID-19, can targets the OUT domain-containing
protein 7B (OTUD7B) genes to regulate antiviral response and
promotes acute lung injury.8® Several IncRNAs including MALAT-1
and structural maintenance of chromosomes 2-antisense 1 (SMC2-
AS1), which separately regulates the IL-8, calpain-1 catalytic
subunit 1 (CAPN1), Wnt, and TGF-$ signaling pathway, are also
essential to regulates lung repair and regeneration.>%'%¢

Cardiac system. More than 7% COVID-19 patients experience
myocardial injury from the infection, and over 25% of hospitalized
cases showed an elevated level of troponin (a marker of cardiac
dysfunction).”?”"'?° Despite the mechanism underlying the
cardiac injury after SARS-CoV-2 infection remains uncertain, direct
viral damage received much attention. Many studies have showed
that SARS-CoV-2 RNA can be observed in the heart from some
COVID-19 cases.'?*'3° |n addition, the cardiac myocyte apoptosis
induced by cytokine storm and hypoxia-induced excessive
intracellular calcium may also account for the cardiac injury in
the context of COVID-19."'

The miR-208a and miR-499, two heart-muscle specific miRNAs,
showed significant upregulation in the COVID-19 patients
compared to the influenza-ARDS patients, possibly indicating
chronic myocardial damage after SARS-CoV-2 infection.*® Other-
wise, the miRNA miR-133a, which can regulate neutrophil counts
and degranulation, plays important roles in inflammation-induced
myocyte damage.*®

Central nervous system. SARS-CoV-2 has been identified to
significantly affect the central nervous system (CNS). Reports
indicate that ~30% of hospitalized COVID-19 cases, 45% of severe
cases, and 85% of patients with ARDS exhibit neurological
symptoms.'32133

Current hypotheses aiming at the influence of SARS-CoV-2 on
the CNS primarily focus on neuroinflammation and tissue damage,
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both of which involve host ncRNAs."** Several ncRNAs show
potential for modulating the immune process of neural cells. As
we screened, an important IncRNA NEATI1, its elevation can
regulate the inflammation of neurons and involve in the
susceptibility to COVID-19 infection.'>>'3% Upregulated NEAT?
was also reported in patients with ischemic stroke, and knock-
down of NEATT can alleviate the apoptosis and improve neuronal
viability.">” This result suggests a possible role of NEATT in the
pathogenesis of stroke in COVID-19 cases. Moreover, some
miRNAs, such as let-7c-5p, were reported to emerge as
neuroprotective factors to inhibit microglia activation.'*® Over-
expression of let-7c-5p can reduce the infarction volume and
improve the neurologic deficits. The SARS-CoV-2 has been
observed in human brain vessels and can infect and damage
neurons, indicating that the nervous system is vulnerable to attack
by SARS-CoV-2,'397142

Psychiatric and neurological symptoms have been frequently
reported in COVID-19 survivors for up to 12 months following
infection, with the estimated prevalence of 19.7% and 18.7%,
respectively.® Sleep disturbances, depression, insomnia, anxiety
symptoms, and cognitive impairment are prevalent in these
individuals, placing a significant burden on their well-being.'*
Besides, long COVID cases have reported experiencing “brain fog,”
which is characterized by the feeling of being mentally slow or
fuzzy."**'*> One potential mechanism by which ncRNAs may
contribute to the development of neuropsychiatric sequelae is
through modulation of aberrant neurotransmitter levels resulting
from hyperinflammation. In individuals who recovered from
COVID-19, miR-15a-5p was upregulated compared with that in
healthy control, along with decreased serum soluble programmed
cell death protein-1 (PD-1, a direct target of miR-15a-5p) and
increased cytokines, including IL-1B, IL-1RA, and IL-8."* The
abnormal PD-1 signal may result in dysregulated T-cell functions,
and inhibition of PD-1 can reduce the availability of tryptophan
and tyrosine in the mice brain and repress the synthesis of
serotonin and dopamine, leading to enhanced anxiety-like
behaviors and fear response.'”” These data suggest a function
of the abnormal miR-15a-5p/PD-1 axis in the depression, anxiety
or post-traumatic stress disorder symptoms in long COVID cases.
Moreover, the function of miR-15a-5p in neuropsychiatric sequela
of COVID-19 has more possibilities. Ataxin-7-like protein 3B
(ATXN7L3B), a downstream target of miR-15a-5p, showed an
involvement in human neurodevelopmental delay and ataxia,'*®
which possibly have a more dramatic effect on brain development
in children who had been infected with SARS-CoV-2.

Peripheral nervous system. SARS-CoV-2 also induces a plethora of
peripheral nervous system diseases both acutely and chronically.
The common peripheral manifestations of COVID-19 include
muscle pain, injury, fatigue and weakness. In COVID-19, skeletal
muscle injury present in 19.3% of individuals who are severely ill
and 4.8% of individuals in non-severe group.'** Fatigue and
weakness have been commonly reported in individuals who
recovered from COVID-19. Studies have showed that 32% of
individuals continued to experience fatigue for 12 or more weeks
after their initial COVID-19 diagnosis.'*® Fatigue is characterized by
an overwhelming feeling of tiredness or lack of energy, while
weakness refers to a decrease in muscle strength.'*® The skeletal
muscles and other cells in muscles, including leukocytes,
fibroblasts and endothelial cells, also express ACE2 receptors.
Therefore, it suggests that skeletal muscles are susceptible to virus
invasion and immune-mediated myopathies.'®’ The common
gene interaction networks were shown between the long COVID
and myalgic encephalomyelitis/chronic fatigue syndrome, invol-
ving 9 common genes and 102 miRNAs."*? In addition, a
correlation was found between the downregulated let-7b-5p in
convalescent individuals after SARS-CoV-2 infection and the
master regulatory gene paired box protein 3 (PAX3).*? PAX3 can
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mediate muscle function and protect muscle satellite cells from
environmental stress.”>*'>* Further, it has been reported that
upregulation of Pax3 in the myogenic differentiation antigen
(MyoD ") myoblasts was accompanied with activated transcrip-
tion of antiapoptotic factors B-cell lymphoma/leukemia-2 (Bcl-2)
and Bcl-2-like protein-1 (Bcl-xL),">®> while persistent expression of
Pax3 would inhibit myogenic differentiation, indicating that
approximate Pax3 degradation is critical for the progression of
the myogenic program.'*¢

NCRNAS AS BIOMARKERS FOR COVID-19

Given the involvement of host ncRNAs in diverse processes
including viral invasion and replication, immune response, multi-
organ damage, and the occurrence of long COVID resulted from
SARS-CoV-2 virus, distinct ncRNAs have emerged as potential
biomarkers for each of these processes. Currently, ncRNAs have
been utilized as promising biomarkers for kinds of diseases, mostly
for multiple types of cancer,'®"" while the diagnostic utility of host
ncRNAs may be limited in the context of COVID-19. Three
diagnostic tests are commonly employed for COVID-19, encom-
passing molecular testing using nasopharyngeal or nasal swabs to
detect viral RNA, antigen testing to identify viral proteins, and
serology testing to detect host antibodies in response to infection,
and the first two methods can be utilized for diagnosing acute
infections.'®’

Host ncRNAs may provide advantages in closely monitoring and
evaluating the development of COVID-19 disease. According to
WHO,'*® severe COVID-19 patients are defined by any of: (1)
oxygen saturation less than 90% on room air; (2) severe
pneumonia; (3) signs of severe respiratory distress. The critical
COVID-19 patients are defined by the criteria for ARDS, sepsis,
septic shock, or other conditions that would normally require the
provision of life-sustaining therapies such as mechanical ventila-
tion or vasopressor therapy. Meanwhile, the WHO has also
provided corresponding management and treatment recommen-
dations for patients with different severity levels. During these
processes, relying solely on clinical symptoms for disease
progression assessment may lead to treatment delays, as
molecular alterations in the body might have already occurred
prior to symptom manifestation. Therefore, utilizing ncRNAs to
assist the disease management can facilitate the convenience in
monitoring the progression of COVID-19 and offer significant
advantages in delivering timely treatment recommendations and
measures. Additionally, compared to other molecular biomarkers,
ncRNA possesses some features that make it a valuable tool in
clinical use, including its tissue-specificity, cell-specificity, devel-
opmental stage-specificity, and stability.’*® In the following
section, we present a comprehensive overview of the current
research on potential biomarker ncRNAs for COVID-19 diagnosis,
stratification, prognostic evaluation, and treatment response
(Fig. 3a).

Diagnostic biomarkers for COVID-19

Some patients may persistently exhibit negative test results
despite displaying clinical symptoms.'®” Considering that the
expression profiles of host miRNAs or IncRNAs are highly sensitive,
with changes observed even between the acute phase (within 3
days) and later stages (approximately 7 days), and thus, host
ncRNAs could serve as a valuable tool for confirming clinical
diagnoses.*'**> For instance, the miR-155 molecule has been
extensively recognized as a pivotal regulator of immune cells
throughout evolution and serves a crucial role in the development
of progressive inflammatory diseases.*’ It exhibited a remarkably
high area under the curve (AUC) value of 0.99 for COVID-19
diagnosis.'®® Whether this differential expression of miR-155 is
induced by SARS-CoV-2 infection or just due to the inflammatory
response merits more investigations. However, an investigation
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reported that it was also upregulated of the miR-155 in the COVID-
19 individuals compared to influenza-ARDS cases, showing a
strong discrimination with an AUC of 1.00.%° More validations are
worthy to identify whether miR-155 serves a specific function in
the COVID-19 pathogenesis.

Several IncRNAs and circRNAs have also demonstrated promis-
ing outcomes. Among them, small nucleolar RNA host gene 16
(SNHG16) can activate the TGF pathway and participate in
inflammatory cascades; its expression was found to be down-
regulated in COVID-19 cases compared to controls. Furthermore,
SNHG16 holds potential as a biomarker for distinguishing COVID-
19 cases from healthy controls with an AUC of 0.67, sensitivity of
0.70, and specificity of 0.59.%" CircRNA has_circ_0000479 also
showed upregulation in the COVID-19 patients, with a negative
correlation with IL-6 expression.'™*

Stratification biomarkers for COVID-19

Most individuals infected with COVID-19 typically experience mild
(40%) or moderate (40%) manifestations of the disease. Approxi-
mately 15% progress to a severe stage necessitating oxygen
support, while 5% develop critical illness characterized by
complications likely respiratory failure, ARDS, sepsis and septic
shock, thromboembolism, and/or multiorgan failure.'®® Distin-
guishing between non-severe and severe COVID-19 patients is
reliant on certain diagnostic examinations, including respiratory
rate and chest CT. The availability of more accessible biomarkers
for monitoring disease severity could facilitate prompt and
appropriate treatment for patients. A selection of potential host
miRNAs and IncRNAs were identified for discriminating COVID-19
severity (Table 2).

MiR-155 plays a pivotal function in the regulation of
inflammatory-related proteins and immunomodulatory proteins,
exhibiting distinct expression patterns between either COVID-19
patients and healthy controls or severe and moderate cases.'®®
Haroun et al. identified an upregulation of plasma miR-155 in
severe COVID-19 cases using RT-qPCR. Furthermore, they con-
sistently observed a significant positive correlation between its
expression level and clinical parameters likely chest CT findings,
C-reactive protein (CRP), and ferritin levels. The AUC for miR-155 in
distinguishing severe from moderate cases was 0.75, with a
sensitivity and specificity of 0.76 each.'®® Considering the above
promising diagnostic implications,”> miR-155 holds more potential
as an indicator for long-term monitoring of COVID-19 progression.

Certain miRNAs, including miR-148a-3p, miR-486-5p, and miR-
451a, exhibit potential for distinguishing between COVID-19
patients in the intensive care unit (ICU) and those in general
wards. As we have mentioned in the above section, miR-148a-3p
can target various genes within the SARS-CoV2 genome (ORF1a, E,
S, and M), and the other two miRNAs have been reported with
dysreqgulated B and T lymphocytes, chronic inflammatory
response, and acute lung injury.'®*'®* De Gonzalo et al. observed
an upregulation of miR-148a-3p and downregulation of both miR-
486-5p and miR-451a among ICU cases’ serum samples. The AUC
value of a signature consisting of these three miRNAs for
differentiating between ICU patients versus ward patients was
0.89, which was higher than other molecular biomarkers, such as
leukocyte counts (AUC=0.74), D-dimer (AUC=0.87), or CRP
(AUC=0.72), indicating a value of miRNAs as biomarker for
evaluating the COVID-19 development.

In addition to classifying disease severity, certain ncRNAs have
the potential to predict adverse outcomes characterized by a rapid
onset, as many miRNAs and IncRNAs showed differential
expression in COVID-19 patients between the acute period (within
3 days) and later phage (7 days).***> Moreover, by comparing
COVID-19 patients with ARDS requiring mechanical ventilation to
those without mechanical ventilation, a significant downregula-
tion of miR-369-3p was identified in the serum of patients needing
mechanical ventilation. Furthermore, its AUC for discriminating
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a. Application of ncRNAs biomarkers for COVID-19

Auxiliarly diagnosing the COVID-19

e.g., miR-155, SNHG16,
hsa_circ_0000479

e.g., miR-155, miR-148a-3p, miR-486-5p,
miR-451a, miR-369-3p, GASS,
IncRNA RP11-773H22.4

b. The current therapeutics for COVID-19 patients
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- - )
- o

=

COVID-19 patients g
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Fig. 3 Summary of the clinical applications of ncRNAs-based biomarkers and therapeutic strategies against COVID-19. a Some host ncRNAs
can be used as biomarkers in various clinical scenarios after SARS-CoV-2 infection, including auxiliary diagnosis of the COVID-19 (e.g., miR-155,
SNHG16, hsa_circ_0000479), differentiation of the disease severity (e.g., miR-155, miR-148a-3p, miR-486-5p, miR-451a, miR-369-3p, GAS5, IncRNA
RP11-773H22.4), distinguishing the survivors compared to non-survivors (e.g., a signature consisting of miR-22-3p, miR-3180-3p, let-7f-1-3p, let-
79-5p, miR-1255a, miR-140-3p, miR-20a-5p, miR-363-5p, miR-4510, and miR-6130), distinguishing the post-acute patients compared to healthy
controls/acute patients (e.g., miR-146a-3p, miR-29a-3p, let-7b-3p, THRIL, MALAT-1), and indicating the treatment response (e.g., miR-31-3p, miR-
29a-3p, miR-126-3p, miR-146a-5p). b The current therapeutics for COVID-19 patients, including (i) antiviral drugs, (ii) monoclonal antibody, (jii)

convalescent plasma therapy and (iv) new drug development (ncRNAs-based strategy, e.g., circRN

ARBD-Delta) ¢ potential therapeutical strategies

based on ncRNAs. Restoration of miRNA level: the miRNA mimics and agomirs can be synthesized and delivered into the cells to increase the
level of a target miRNA. Targeting ncRNAs at the DNA level: using CRISPRi and CRISPRa tools to transcriptionally inhibit or activate target ncRNA
expression. Targeting ncRNAs at the RNA level: (i) The siRNA targets at ncRNAs in the RISC complex and initiate degradation of ncRNAs; (ii) ASOs
can bind the target ncRNAs and induce its degradation by recruitment of Ribonuclease (RNaseH1); (iii) CircRNAs emerge as the sponges of
miRNAs to restrain their bio-accessibility to mRNA; (iv) CircRNAs directly bind the viral mRNA to inhibit their propagation

between patients with and without mechanical ventilation was
calculated as 0.72."®> Numerous studies have reported that miR-
369-3p plays a dual role in both immune system regulation and
viral performance; its downregulation can promote the production
of inflammatory factors and it possesses a target site within the
SARS-CoV-2 genome, indicating that the dysregulation of miR-
369-3p following the onset of disease may facilitate and expedite
the development of ARDS after SARS-CoV-2 infection.'®”
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LncRNAs can also be utilized biomarkers for distinguishing the
disease severity. For instance, IncRNA growth arrest-specific
transcript 5 (GAS5) participated in promoting ACE2 expression
by inhibiting miR-200."%® Accordingly, a contrasting expression
pattern of GAS5 and miR-200 was observed in the serum samples
from 88 severe COVID-19 cases compared to 112 moderate cases,
with a downregulation of GAS5 and an upregulation of miR-200.'¢”
Notably, GAS5 exhibited superior discriminatory performance
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between severe and moderate patients, as evidenced by an AUC

o A N of 0.74 (sensitivity=0.74, specificity=0.71), while miR-200 demon-
3 g _ . _ strated an AUC of 0.66 (sensitivity=0.65, specificity=0.63). LncRNA
S S 38 8 8 N RP11-773H22.4 also showed potential for differentiating severe
v v o© © o o and mild COVID-19 patients; its serum expression was increased in
the severe patients compared to mild ones, which could cause

downregulated miR-4257 and subsequently upregulated IL-11

< < < < <« < receptor subunit alpha (IL-1TRA) mRNA thereby promoting
z =z z =z z inflammation.*” The AUC for IncRNA RP11-773H22.4 in this cohort

was 0.78, with a sensitivity of 0.78 and specificity of 0.71.
Additionally, multivariate analysis revealed that IncRNA RP711-
773H22.4 was an independent factor besides serum ferritin level

Sample size AUC Sensitivity specificity P value Ref.

< < < < < <
z =z =z z =z z and CT findings, demonstrating its promising role as a predictor
m @ o N N for COVID-19 severity.
o)) o @ <] N N
o o o o o o
Prognostic biomarkers for COVID-19
Survivors vs. non-survivors. As the disease progresses, some
patients may succumb to it. A systematic analysis of COVID-19-
m o o o o related mortality from 2020 to 2021 revealed a global all-age
moY - N N excess mortality rate of 120.3 deaths (113.1-129.3) per 100,000
g g g o population due to COVID-19."® Therefore, it is imperative to
§ § § é & & investigate early markers for the COVID-19 clinical outcomes
£ & 2 88 38 forecast, and certain miRNAs exhibit potential in this domain.
g 8 8 8 £g8 £8 Collecting the plasma sample from COVID-19 patients upon
£g £y Yy £9g 5§ 5 hospital admission or within the first few days after hospitalization
S8 S8 58 s58Ea o but before treatment, 77 upregulated miRNAs and 60 down-
S 8o Bo B B2 33 33 regulated miRNAs in severe cases were identified.** Furthermore,
a 20 20 a2 = ﬁ 2 ﬁ a mortality predictive model consisting of ten miRNAs (miR-22-3p,
s |53 53 53 53 535 53 miR-3180-3p, let-7f-1-3p, let-7g-5p, miR-1255a, miR-140-3p, miR-
o 2L DL DU DuOs OF 20a-5p, miR-363-5p, MiR-4510, and miR-6130) was constructed
and confirmed to have better predictive power than the basic
g Y N S Y Y model that only considergq age and ger)dgr (Al.JC:. 0.97 vs. 0.88),
ua § % % % % along with over 90% sensitivity and specificity. Similarly, miR-192-

5p and miR-323a-3p showed downregulation in ICU COVID-19
non-survivors compared with the survivors, and a signature
composed of them can be utilized for discriminating the non-
survivors from survivors with an AUC of 0.8. Among the above
host miRNAs, some of them (e.g., let-7g-tp, miR-363-5p, and miR-
4510) can target the SARS-CoV-2 genome, and miR-323a-3p may
play an inhibitory role in viral replication; miR-140-3p can target
the serine protease TMPRSS2, showing a role in regulating the
viral invasion; miR-20a-5p and miR-192-5p can participant in the
host response, such as cell death and cytokine synthesis.**®® The
dysregulated expression of these host miRNAs indicates a
distinction in viral invasion and replication as well as subsequent
host response between COVID-19 non-survivors and survivors,
potentially manifesting earlier than clinical symptoms. Therefore,
these miRNAs may serve as both prognostic biomarkers for
mortality risk prediction and therapeutic targets for mitigating
COVID-19 progression.

Regulating inflammation and antiviral PBMCs

cellular defense
inflammatory activity by interacting

Positively correlated with dry cough
Positively correlated with dry cough,
fever, and decreased smell
Positively correlated with dry cough
Controlling the expression of TNF-a
inflammation and immune response
with the NF-kB pathway

signaling which regulates
macrophages under inflammatory

Biological functions related with
circumstances and promoting

COVID-19 pathogenesis
Controlling cytokine secretion in

Post-acute patients vs. healthy control/acute patients. Following
the acute phase, a considerable number of patients may encounter

peripheral blood mononuclear cells, THRIL TNF and HNRNPL-related immunoregulatory long non-coding RNA

ARDS associated acute respiratory distress syndrome, GAS5 arrest-specific transcript 5, MALAT-1 metastasis-associated lung adenocarcinoma transcript 1, ORF open-reading frame, PB peripheral blood, PBMCs

s 2 r% =3 persistent manifestations subsequent to their initial symptomatic

°£, ,% i § & - SARS-CoV-2 infection, commonly named as long COVID. The host

= RO DR S ncRNAs may be involved in this process, as evidenced either by the

o @ €t E E £ ‘E‘ identification of numerous host DEmiRNAs and DEIncRNAs during

the recovery stage of COVID-19 or the possible functions in the

€ persistent organ failures.*? In line with these findings, a study

o8 comparing host miRNAs in PBMCs between the post-acute phase

- ER 2 COVID-19 patients (4-5 weeks after the acute phase) and the
g g@ R healthy controls revealed upregulation of three miRNAs (miR-146a-
£ £ 'g 3 3p, miR-29a-3p, let-7b-3p) among post-acute cases.*” All three
§ 5 208 exhibited an AUC value above 0.9 for discriminating between post-
2 24 8 acute COVID-19 cases and healthy controls. Furthermore, the

f:: E 7 g *g expression levels of miR-146a-3p and miR-29a-3p were found to be
E § A0 a higher in PBMCs during the post-acute stage compared to the

acute phase, indicating a progressive increase in their expressions
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throughout COVID-19 development. Some findings indicate that
miR-146a possibly exerts a protective effect on the virus by
suppressing signal transducer and activator of transcription 1
(STAT1) protein, thereby impeding SARS-CoV-2 replication and
evading antiviral response.'®'”®  Moreover, previous studies
demonstrated that miR-146a-3p negatively regulated the Sirtuin-
1/noncanonical nuclear factor-kB (NF-kB) axis to contribute to
acute lung injury.**'”" This is consistent with that miR-146a has
been shown to target 21 differentially expressed genes (DEGs) in
lung tissues of COVID-19 patients.'”> Accordingly, a positive
correlation was observed between miR-146a-3p expression and
manifestations such as fever, and coughing in COVID-19 cases.
Consequently, stepwise upregulation of miR-146a-3p may play a
role in persistent post-acute phase symptoms or even long COVID
through various cascades, indicating its potential for closely
monitoring COVID-19 development. A positive correlation was
also observed between the expression of miR-29a-3p and dry
cough in COVID-19 cases.*® However, further investigations are
required to determine whether this miRNA exerts an antiviral or
pro-viral function in SARS-CoV-2 pathogenesis, as some findings
have shown downregulation of miR-29a-3p in the plasma of ARDS
patients and administration of miR-29a-3p agomir can inhibit the
expression of inflammatory factors in the lung.'”?

Certain IncRNAs, such as TNF-a and heterogeneous nuclear
ribonucleoprotein L (THRIL) and MALAT-1, exhibited differential
expression between post-acute and acute COVID-19 patients.
THRIL can modulate TNF-a expression by interacting with
heterogeneous nuclear ribonucleoprotein L, promoting inflamma-
tion and immune response.'”* Similarly, MALAT-1 can regulate
cytokine secretion and contribute to inflammatory activity
through targeting the NF-kB pathway.'”® The expressions of these
IncRNAs in PBMCs were significantly decreased during the post-
acute phase (6-7 weeks after the acute phase), with AUC values
for discriminating the post-acute cases from acute cases of 0.75 for
THRIL and 0.72 for MALAT-1, respectively. Further, a positive
correlation was identified between dry cough and THRIL expres-
sion, while fever and skeletal pain showed a positive correlation
with MALAT-1 expression, indicating possible involvement of host
IncRNAs in persistent manifestations.*’

Predictive biomarkers for COVID-19 treatment response

In addition to monitoring and predicting the development of
COVID-19, certain host miRNAs exhibit specific expression patterns
in response to COVID-19 treatment. Notably, hospitalized patients
with varying disease severity demonstrated significant down-
regulation of miR-31-3p, miR-29a-3p, and miR-126-3p levels.
However, in patients treated with remdesivir and favipiravir during
hospitalization, the expression of these three miRNAs returned to
baseline levels in treatment-responsive patients compared to non-
responsive individuals.'’® Considering that miR-29a-3p also exhib-
ited increased expression during the recovery stage compared to
the acute phase, it can be speculated that this particular miRNA
possibly acts as an marker of COVID-19 improvement and possibly
play a pro-viral function. Another study analyzing serum samples
from COVID-19 cases with multifocal interstitial pneumonia who
received a single-dose intravenous infusion of tocilizumab—an
anti-IL-6 receptor drug—revealed a marked increase in serum
levels of miR-146a-5p among treatment-responsive patients. This
finding is in line with its downregulation observed in COVID-19
patients in comparison with the healthy.>®'”” These host miRNAs
exhibit potential as predictive markers for personalized treatment
response, thereby aiding in enhancing the efficacy of COVID-19
therapies. Further investigations are worthy to explore whether
there exist host INcRNAs or circRNAs with analogous functionalities.

Demographic factors influencing the expression of host ncRNAs

The severity and mortality of COVID-19, including long COVID,
are influenced by various factors such as age, sex, and pre-
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existing comorbidities. A number of studies have shown that
elderly individuals or males are frequently associated with worse
COVID-19 prognosis.'”®7'8% |n turn, these demographic variables
may also impact the host ncRNAs expression. Comparing COVID-
19 patients in different conditions can aids in identifying
DEncRNAs as potential biomarkers for targeted populations.
However, the comprehensive impact of these factors on ncRNAs
in COVID-19 patients remains inadequately documented.
Current research has been limited to detecting changes in a
specific type of miRNA using PCR methodology, and whether
these differences extend to IncRNAs and circRNAs remains
largely unexplored.

Some miRNAs exhibited an association with age in the context
of COVID-19. The miR-10b (a miRNA regulating the cytokines)
showed a negative correlation with the age of COVID-19 cases,
along with a downregulation in COVID-19 patients compared with
age-matched healthy controls, indicating that a greater decrease
of miR-10b per age may be associated with the higher
inflammation in the older COVID-19 patients.30 In addition, is
there any differential expression of miRNA in COVID-19 patients
across different age groups? Evidence from high-throughput
methods remains limited, but a study utilizing RT-gPCR demon-
strated that miR-200c-3p was upregulated in saliva samples of
COVID-19 cases over the age of 42 compared to those under 42
years old.'®' Combined with the finding that miR-200c-3p showed
higher expression in severe COVID-19 cases vs. healthy control, it
suggests that some miRNAs in older patients may contribute to
increased inflammation and cytokine storm, thereby exacerbating
disease severity and mortality.>*'®'

Sex and comorbidities can also affect the expression of host
miRNAs in the context of COVID-19. Comparing with female COVID-
19 cases, miR-10b was downregulated in the male ones who more
possibly experienced frequent infection, poor clinical outcomes, and
higher mortality.'”®'82 Besides, pre-existing comorbidities may
modulate the severity of COVID-19 via miRNAs, due to a preliminary
result that the expression of miR-200c-3p was independently
associated with COVID-19 cases with hypertension.'®’

The overall findings of these investigations suggest a correlation
between changes in the expression of certain miRNAs and age,
gender or comorbidity in COVID-19 patients, potentially shedding
light on the more severe symptoms observed in older or male
patients and those with comorbidities. However, it is important to
note that further investigations with larger sample sizes and
advanced sequencing or microarray techniques are needed to
determine whether these results specifically stem from the SARS-
CoV-2 infection and whether can generalize to IncRNAs and
circRNA.

NCRNAS-BASED THERAPEUTICS FOR COVID-19

The emergence of specific therapies designed to modulate
ncRNAs has opened up new possibilities for their use as
therapeutic targets. Such strategies typically involve interven-
tions that target the transcriptional activation or inhibition of
ncRNA expression loci at either the RNA or DNA level. Examples
of these interventions include the use of mimics, agomirs,
clustered regularly interspaced short palindromic repeats
(CRISPR)/CRISPR-associated protein 9 (Cas9) tools, antisense
oligonucleotides (ASOs), and RNAi knockdown.'' The advance-
ments made in gene editing techniques have resulted in an
increase in the number of preclinical and clinical investigations
which have explored the potential use of ncRNA candidates for
treating a variety of diseases, such as liver cancer,'®® viral
hepatitis C,'®* cardiovascular disease,'®®> and Alzheimer's dis-
ease.'® Given this promising trend and important functions in
the pathogenesis of COVID-19, ncRNAs may also represent a
viable therapeutic approach for treating COVID-19, including
cases of long COVID.
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Potential therapeutic targets of ncRNAs

One potential routine is the intervention of virus infection.
Specifically, miR-150-5p shows great therapeutic values for the
treatment of such infection. Increasing the expression level of miR-
150-5p through the utilization of mimics has been recognized to
attenuate SARS-CoV-2 infection in vitro, while inhibition of miR-
150-5p can reverse this effect.'®” Other ncRNAs, including miR-
106-5p, let-7b-5p, and NEATI, have also emerged as potential
therapeutic targets due to their contributions to immune response
and cellular development.

Repairment of immune response is the paramount treatment
for COVID-19. NcRNAs-based therapeutics that target specific
immune factors nucleotide sequences may mitigate inflammatory
and cytokine storms, and ameliorate the immune response to
SARS-CoV-2 infection.

NcRNAs may also act as targets for treating the neuropsychiatric
symptoms or sequela following SARS-CoV-2 infection, with
miRNAs such as miR-15a-5p and let-7 family playing essential
roles as regulators of brain development in association with
ataxia-associated genes such as ATXNT, ATXNTL, and ATXN7L3B.

Promising therapies modulating the host ncRNAs

Thus far, a variety of therapeutics have been employed in clinical
settings for treating COVID-19, which can be broadly categorized
into three categories (Fig. 3b): drug repurposing, monoclonal
antibody and convalescent plasma therapy. Several drug/vaccines
have been successfully developed and used in COVID-19 patients,
such as antiviral drug (remdesivir), hydroxychloroquine, combina-
tion of two anti-human immunodeficiency virus (HIV) drugs
(lopinavir and ritonavir), glucocorticoids (dexamethasone) and
monoclonal antibodies (REGEN-COV, tocilizumab, sotrovimad,
regdanvimad and combination of bamlanivimab and etesevi-
mab).'887192 Despite these successes, small-molecule inhibitors
and vaccines are limited in their ability to target “undruggable”
portions of the genome. NcRNAs, on the other hand, offer
promising targets for therapeutic intervention, as they can
regulate genes and affect viral replication and infection in a
direct way. Recently, Qu et al."”® reported that circRNARBP-Omicron
can induce more effective neutralizing antibodies and immune
responses against SARS-CoV-2 variants than mRNA vaccines,
indicating that ncRNA-based therapies hold significant potential
for future applications.

MiRNA mimics and agomir are widely-used methods to increase
the levels of miRNAs which have been downregulated in
disease.”®*'%® MiRNA mimics are designed to have the same
sequence as endogenous mature miRNAs, and can increase the
levels of mature miRNAs and reorganize their targets (Fig.
3¢)."?”""%8 For instance, miR-219 has been recognized as a pivotal
function in regulating the oligodendrocyte development, myeli-
nation, and remyelination.®® In a demyelinating model induced
by Theiler's murine encephalomyelitis virus, intranasal adminis-
tration of mMiR-219 mimics before disease onset markedly
improved the disease severity, along with reduction of pro-
inflammatory cytokine levels and viral RNA replication.’®® This
result highlights the potential of host miRNA mimics for the
treatment of viral diseases. Moreover, the ease with which miRNA
mimics can be synthesized in commercial laboratories increases
their availability and accessibility for clinical use.'®”

In a broader context, therapeutic interventions based on ncRNAs
can be classified into two distinct categories: those that modulate
transcription at the DNA level, and those that modulate transcription
at the RNA level (Fig. 3c). To date, DNA genome-editing tools, such as
CRISPR-interference and CRISPR-activation showed exciting efficiency
to inhibit or activate ncRNAs expression. In this method, the mutant
form of Cas9 is fused with transcriptional repressors or activators of
the promoter of specific NcRNAs.?*'?%? The two main strategies of
modulation RNA expression are ASOs and RNA-mediated inter-
ference (RNAI) which can inhibit the ncRNAs. The high affinity with
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the cell membrane and great transfection efficiency making ASOs
and RNAi as promising ncRNAs-based inhibitory therapies.>>** On
the other side, circRNAs can sequester virus-associated miRNAs and
restrain their bio-accessibility to mRNA, or circRNAs directly target the
conserved regions of viral RNA to suppress its propagation.?°>2%
Thus, it is crucial to fully explore the potential possibility of ncRNAs-
based therapeutics for COVID-19 and subsequent disease states.

CONCLUSION AND PERSPECTIVE

This review highlights the significance of host miRNAs, IncRNAs,
and circRNAs in the pathogenesis of SARS-CoV-2, providing
evidence for the potential clinical value of ncRNAs in the
stratification, prediction, and treatment of COVID-19, including
long COVID.

Increasing research has demonstrated that viral infections can
induce widespread changes in host ncRNAs, which in turn can
impact virus invasion and pathogenesis. Recent findings have
revealed that the interaction between host miRNAs and RNA
viruses can be either direct or indirect.>”’ In the indirect pathway,
viral RNA is recognized by pattern-recognition receptors and Toll-
like receptors, leading to IFN signaling cascade activation, which
suppress viral replication. These processes may further alter
miRNA expression levels with pro-viral or antiviral effects. In the
direct pathway, host miRNAs directly bind to various regions of
the viral genome such as 5 UTR, 3’ UTR, or coding regions on
different types of RNA viruses like Eastern equine encephalitis
virus, primate foamy virus 1, HIV, influenza, Hepatitis C virus, as
well as SARS-CoV-2. This direct interaction can result in the
inhibition of viral genome translation to suppress viral replication
or stabilization of virus RNA to promote replication. Additionally,
altered miRNAs may be involved in host immune response and
contribute to viral pathogenesis. Similarly, IncRNAs exhibit
pleiotropic functions in modulating the pathogenesis of viruses.*®
Commonly, IncRNAs regulate viral pathogenesis through several
mechanisms, such as modulation of cytoplasmic RNA receptors
involved in viral recognition, regulation of IFN genes and IFN-
stimulated genes expression leading to either anti- or pro-viral
replication properties, and direct modulation of IFN production by
binding to the IFN promoter region. While there is a paucity of
information about the circRNAs, some studies have highlighted
their significance in modulating viral pathogenesis. The primary
mechanism by which circRNAs function is through acting as
miRNA sponges to influence various processes, including viral
replication (e.g., SARS-CoV-1, MER-COV), immune response and
inflammation.®® The existence of specific relationships between
host ncRNAs and SARS-CoV-2 infection is an intriguing question.
However, current research primarily focuses on investigating the
dysregulated landscape of host ncRNAs following SARS-CoV-2
infection, with limited wet-lab experiments deciphering the
underlying mechanisms behind this relationship. Further studies
are warranted to explore their functions and relationships in order
to facilitate our understanding of COVID-19 pathogenesis.

Based on the aforementioned findings, a plethora of host
ncRNA, particularly miRNAs, have been reorganized as pivotal
regulators in modulating pathogenesis to COVID-19. In order to
further providing some directions for future studies, we took the
miRNAs discussed in the section “SARS-CoV-2 associated ncRNAs”
(Supplementary Tables S1-3) as input search, then performed a
bioinformatic analysis of the target genes of the miRNA, finding
that the immune response and organ deficits, even long COVID,
may be promising routines for future investigation. As shown in
Fig. 4a, COVID-19-related DEmiRNAs mostly enriched on the TNF
pathway with the activation of NF-kB signaling. The aforemen-
tioned pathways exhibit a strong association with genes encoding
inflammatory factors, including TNF, NF-kB, and inhibitor kB (IkB).
In addition, some signaling pathway are highly linked with
transcription genes, including transcription factor Jun (JUN),
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protein c-Fos (FOS), activator protein-1 (AP-1), and cAMP response
element-binding protein (CREB). Several genes like HIFTA can
interact with JUN and promote the regulatory effect of T cells to
enhance virus clearance. This effect can be regulated by the
DEIncRNAs HIF1A-AS-1. The activation of AP-1 is required to
interact with other genes like RORA, which is regulated by
DEINcRNA RORA-AS-7. The AP-1-associated pathway plays an
essential function in controlling T-cell differentiation. Besides,
several miRNAs show association with the development of some
tissue or organs in the host after SARS-COV-2 infection. We found
some miRNAs may play as regulatory factors involved in blood
vessel development, which potentially result in the development
of cardiovascular disease. Our bioinformatical results also indicate
that some DEmiRNAs may regulate the brain development, neural
differentiation, and neurogenesis via the interaction with key
genes, including DICERT, ATXN1, ATXNIL, and syntaxin-6 (STX6)
(Supplementary Fig. S1 and Fig. 4b-d), which potentially
contribute to the development of cerebrovascular disease and
neurodevelopmental diseases. The future requires further wet-lab
experiments to validate their functionality in these processes,
surpassing the confines of bioinformatics analysis.

To date, SARS-CoV-2 remains a persistently menacing pathogen
to human beings in the foreseeable future. With the emergence of
numerous variants of SARS-CoV-2, it is still unclear whether and
how the evolutionary trajectories of coronaviruses impact the
human genome. Sex can serve as a valuable lens for comprehend-
ing this inquiry, as compared to female, significantly disease
severity and mortality have been found in male COVID-19
patients.”’® Accordingly, elevated expression of virus entry factors,
ACE2 and TMPRSS2, was observed in host Sertoli cells and germ
cells, indicating a greater impact on males with reproductive
disorders in COVID-19.2"" Interestingly, our enrichment analysis
results of the DEmiRNAs, which also have been reported before,
showed that male sex differentiation with master regulatory gene
katanin p60 ATPase-containing subunit A-like 1 (KATNALI) is
highly enriched in severe compared to non-severe cases. From a
macroscopic perspective, the reproductive disorders following
infection may drive some evolutionary adaptations within the
human. The ncRNAs derived from the human genome, which are
associated with immune response and pathological changes
caused by SARS-CoV-2, could serve as evolutionary indicators
under substantial selection pressure. In addition to elucidate viral
diversity and disease severity, these host ncRNA indicators may
also provide insights into the evolutionary trajectories and
protection persistence after COVID-19. Further investigation and
comparison over an extended temporal scale are imperative to
comprehend the potential long-term impact of this selective
pressure.

Many gaps are worthy of further exploring in the future. First,
there remains a dearth of genome-wide screening of ncRNAs,
especially the IncRNAs and circRNAs, expression in individuals of all
ages, ranging from children to the elderly, who have been infected
with SARS-CoV-2. The use of high-throughput sequencing would
be advantageous in uncovering the expression profile of ncRNAs in
COVID-19 cases, as well as identifying potential biomarkers and
therapeutic targets. Second, multiple variants of SARS-CoV-2 have
emerged. Distinct virus subtypes lead to varying symptoms, but
little research has examined whether different ncRNA expression is
induced.?'? Exploring the expression profile of ncRNAs induced by
different variants can improve our understanding of their
influences. Third, the increasing burden of long COVID and
reinfection have resulted in significant challenges, with the
pathogenesis and treatments remaining unclear.’’>="> Although
some hypotheses have been proposed regarding the host ncRNAs
in long COVID or reinfection, direct investigations about the
functions are lacking. Thus, conducting comprehensive transcrip-
tomic screening and wet-lab experiments of individuals with long
COVID or reinfection necessitate further study.
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NcRNAs hold significant therapeutic potential for patients.
However, challenges such as off-target effects, specificity, and
toxicity issues in drug design and delivery systems hinder their
clinical translation. With the advancement of sequencing technol-
ogies and detection methods, more ncRNAs will emerge from the
genome’s dark matter to pave the way for successful translational
applications in COVID-19 patients and other human diseases.
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