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SARS-CoV-2 remodels the landscape of
small non-codingRNAswith infection time
and symptom severity

Check for updates
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José M. Cuevas 1, Eliseo Albert2, David Navarro2,3, Guillermo Rodrigo1 & Gustavo Gómez 1

The COVID-19 pandemic caused by the coronavirus SARS-CoV-2 has significantly impacted global
health, stressing the necessity of basic understandingof the host response to this viral infection. In this
study, we investigated how SARS-CoV-2 remodels the landscape of small non-coding RNAs
(sncRNA) from a large collection of nasopharyngeal swab samples taken at various time points from
patients with distinct symptom severity. High-throughput RNA sequencing analysis revealed a global
alteration of the sncRNA landscape, with abundance peaks related to species of 21-23 and 32-33
nucleotides. Host-derived sncRNAs, including microRNAs (miRNAs), transfer RNA-derived small
RNAs (tsRNAs), and small nucleolar RNA-derived small RNAs (sdRNAs) exhibited significant
differential expression in infected patients compared to controls. Importantly, miRNA expression was
predominantly down-regulated in response to SARS-CoV-2 infection, especially in patients with
severe symptoms. Furthermore, we identified specific tsRNAs derived from Glu- and Gly-tRNAs as
major altered elements upon infection, with 5’ tRNA halves being the most abundant species and
suggesting their potential as biomarkers for viral presence and disease severity prediction.
Additionally, down-regulation of C/D-box sdRNAs and altered expression of tinyRNAs (tyRNAs) were
observed in infected patients. These findings provide valuable insights into the host sncRNA response
toSARS-CoV-2 infection andmay contribute to the development of further diagnostic and therapeutic
strategies in the clinic.

Theoutbreakofpneumonia that beganat the endof 2019 inWuhan (China)
was later found to be associated with the emergence of a novel coronavirus.
This novel virus has been formally named as severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2)1. This is a positive-sense single-
stranded RNA virus with a genome length of about 30 kb, and it is the
causative agent of the coronavirus disease 2019 (COVID-19) that has
provoked a global public health crisis. Such a disease is characterized by
respiratory distress, fever, cough, fatigue, pneumonia, and muscle pain2–4.
Although diverse studies have focused on elucidating the pathogenesis and
pathophysiology of COVID-195, our knowledge about the transcriptomic
remodeling produced upon infection remains yet in a conundrum,

especially if we focus on the changes occurred in the non-coding layer6.
Hence, the identification of cellular factors involved in this RNA-based
network is essential to better understand themode of action of the virus and
consequently to develop further antiviral strategies7.

Increasing evidence suggests the existence of a close relationship
between the SARS-CoV-2 infection and the altered accumulation of
endogenous small non-coding RNAs (sncRNAs, or simply sRNAs)6,8–11. Of
note, sncRNAs are pervasive in all kingdoms of life (from prokaryotes to
eukaryotes) and they are involved in the regulation of gene expression12.
Typically, sncRNAs comprise RNAmolecules of length smaller than 50 nt.
These include microRNAs (miRNAs), PIWI-interacting RNAs
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(piRNAs)13,14, and emerging sncRNAs such as those derived from transfer
RNA (tsRNAs)15,16, small nuclear RNAs (snsRNAs) and small nucleolar
RNAs (sdRNAs)17 and trimmed forms of miRNAs dubbed as tiny RNAs
(tyRNAs)18. Although thenon-canonical sncRNAswere initially considered
as degradation products of the RNA metabolism, their functional roles are
recently being unveiled, thereby their study is gaining importance12.

Regarding their biogenesis, canonical miRNAs (in vertebrates) are
generated from structured (hairpin) RNA precursors by ribonuclease
(RNase) III enzymes (Drosha and Dicer)19. In short, the pri-miRNA tran-
script is “cropped” by the nuclear Microprocessor complex (Drosha/
DGCR8), releasing a precursormiRNA(pre-miRNA) that is exported to the
cytoplasm and cleaved by Dicer19. In contrast, piRNAs arise from linear
RNAprecursors independently of Dicer andDrosha activity20. Considering
tsRNAs, there are twomain classes: tRNA-derived fragments (termed tRFs),
which are theoretically processed by the RNA interferencemachinery in the
D- orT-loops, and tRNAhalves,which are 30–35nt fragments generatedby
cleaving the anticodon loop by diverse RNases (e.g., Angiogenin in
mammals)15,16. The generation of mature sdRNAs is predominantly based
on the classicmiRNAbiogenesis pathway, involvingDrosha andDicer. The
sdRNA length slightly varies depending on whether the parental snoRNA
belongs to theC/Dbox family ( ~ 27 nt) or to theH/ACA-box family (17-19
nt)17. Moreover, tyRNAs are derived from the activity of several 3’-to-5’
exonucleases capable of trimming Argonaute (AGO)-associated full-length
miRNAs into 14-nt or shorter RNA molecules18. In humans, trimming
occurs in a manganese-dependent manner, but independently of the guide
sequence and the AGO complex18.

The functionofmiRNAsandpiRNAs is basedon the complementarity
with their RNA and DNA targets, leading to RNA silencing, translation
repression, or transcriptional repression via the AGO/PIWI family
proteins21. The accumulation of tsRNAs has been noticed in stress condi-
tions, such as starvation, cancer, and virus infection16. Early studies showed
the association of diverse tsRNAs with AGO and PIWI proteins, indicating
that they can enter the RNA interference pathway, in both animal22,23 and
plant15 cells. In addition, a close interaction between tsRNAs and diverse
RNA-binding proteins and ribosomes has been described in mammals16.
sdRNAs function as a molecular guide of mainly AGO2. Perfect com-
plementarity by sdRNAs leads to target RNA cleavage, while an imperfect
binding results in translation repression17. Regarding the function of tyR-
NAs, recent studies suggest that theymay participate in an alternative RNA
cleavage route by increasing the slicing activity of human AGO324.

In this work, we performed an integrative study of the sncRNA land-
scape by analyzing multiple clinical samples collected from patients with
severe and moderate symptomatology at two different stages of infection.
Our study goes beyondpreviouswork that described an association between
SARS-CoV-2 infection and an imbalance in host sncRNAs25 with more
statistical power and clinical implication. Our results provide evidence that
SARS-CoV-2 infection induces, in addition to the previously described
alterations in the accumulation of host miRNAs and tsRNAs, a significant
imbalance of certain sdRNAs and tyRNAs, thereby providing novel insight
about the mode of action of SARS-CoV-2 and allowing to recognize the
involvement of this regulatory RNA layer in the infection process.

Results
sncRNA quantification and classification
Clinical samples from nasopharyngeal (swabs or aspirates) samples were
collected from 20 SARS-CoV-2 infected patients at two different time points
(T1 and T2). The infection was determined by reverse transcription quan-
titativepolymerase chain reaction (RT-qPCR) in thehospital.T1corresponds
to an initial time at which the first symptoms appear (about 5-7 days post-
infection), while T2 corresponds to a late time (about 19–21 days post-
infection, resulting in adifferenceof 14±4days). In addition,nasopharyngeal
swabs from 10 patients that resulted negative in SARS-CoV-2 infection were
also collected as a control group. COVID-19 patientswere clinically classified
(according to symptom intensity) as moderate and severe (Fig. 1a and Sup-
plementary Table 1). To obtain a global expression profile of the human

sncRNAs, RNA was extracted from samples (enriched for small RNAs) and
was subject to Illumina high-throughput sequencing. Raw data were pro-
cessed as depicted in Fig. 1b. Low-quality libraries (two for each group of
study) were discarded, which resulted in 40 libraries for further analysis. A
total of 396,323,879 high-quality reads were obtained (Supplementary Table
2). Associations between sncRNA profiles (considering all types of samples
and their biological replicates)were assessed by principal component analysis
(PCA). The percentage of the total variance explained by the first three PCs
was 74.8% (Fig. 1c). The different groups of study regarding outcome and
time of infection were predominantly separated according to disease status
(severe andmoderate) (Supplementary Figure 1). We did not observe in our
study associations between sRNA expression and sex or sampling intervals
(Supplementary Fig. 1). In contrast, as it is well established2,26, severe cases
were clearly related to elderly patients (mean age of 86.2 years for severe cases
vs. 53.6 years formoderate cases) (Supplementary Fig. 1a and Supplementary
Table 1). Finally, we cannot exclude the possibility that comorbidities not
considered here may have certain influence on the overall results.

On average, 77.2% of the reads aligned to the human genome. (Sup-
plementary Table 2). A minimal proportion (0.0001%) of the small RNAs
recovered from infected patients matched the SARS-CoV-2 genome and
only eight of them(SupplementaryTable 3)were coincidentwithpreviously
reported virus-derived sRNAs sequences27. 70%of the total clean readswere
annotated as host-derived elements, 6.01% of the sequences were identified
asmicroorganism-derived elements and the remaining reads (24.88%)were
considered as unidentified. Figure 1d shows the distribution of length of the
identified reads. Only reads with a length between 12 and 34 nt were sub-
sequently analyzed. Considering the overall profile, those of 21-23 nt were
predominant in both infected-patient and control samples. However, a
remarkable peak of reads of 32-33 nt was also observed in the libraries
obtained from the infected patients.

SARS-CoV-2 infection leads to a global alteration of the sncRNA
landscape
The effect of SARS-CoV-2 on the accumulation of host sncRNAs was
assessed by pairwise comparisons between control and infected samples.
Only the sequences with a sufficient fold change upon infection (i.e.,
matching the condition log2FC > 0.585, corresponding to FC > 1.5, or
log2FC < -0.585, corresponding to FC < 0.667, with FDR < 0.05) were con-
sidered as significantly differentially expressed (Fig. 2a).

Altered sequences were categorized according to their homology with
the most relevant classes of regulatory sncRNAs (miRNAs, tsRNAs, piR-
NAs, tyRNAs, sdRNAs, and snsRNAs) (Supplementary Table 4). The
remaining host-derived sncRNAs with differential expression (categorized
as Other) and the exogenous sRNAs identified as derived from genomes of
diverse microorganisms were not included for subsequent analyses, focus-
ing here on endogenous sncRNAs. A total of 3107 and 3685 unique
sncRNAs were differentially expressed in response to severe infection at T1
andT2, respectively.However, the reactiveunique sncRNAs recovered from
patients with moderate symptoms were 1019 at T1 and 717 at T2 (Sup-
plementary Table 4). In general, miRNAs, sdRNAs, and tsRNAs were
altered in response to SARS-CoV-2 in all analyzed samples (Fig. 2b and
Supplementary Table 4). Of note, miRNAs were predominantly affected in
the case of severe disease at both T1 (1921 unique sequences, 61.8%) and T2
(2097 unique sequences, 56.9%). In contrast, tsRNAs were the most com-
monly altered sncRNAs in patientswithmoderate disease at T1 (534unique
sequences, 52.4%),while sdRNAswere atT2 (302unique sequences, 42.1%).
A minor impact of SARS-CoV-2 on the expression of tyRNAs, snsRNAs,
and piRNAs was observed (Supplementary Table 4).

To further assess the behavior of the altered sncRNAs upon infection,
we compared the temporal evolution (at T1 and T2) of the accumulation of
differentially expressedmiRNAs, sdRNAs, tsRNAs, and tyRNAs [estimated
by reads per million (RPM)]. Data shown in Supplementary Fig. 2 indicate
that, althoughmiRNAswere predominantly down-regulated in response to
severe andmoderate infection at bothT1andT2, a severe infection leads to a
greater impact over time (i.e., more alterations at T2 than at T1). In general,
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all miRNA sequences pertaining to the same family showed a comparable
accumulation trend in response to SARS-CoV-2 (Supplementary Figure 3).
Regarding tsRNAs, up-regulation was the general response to infection
(Supplementary Figure 2). While the intensity of the relative accumulation
was comparable at T1 and T2 in the case of severe infection, this intensity
notably decreased at T2 with respect to T1 when the outcome of infection
wasmoderate. Finally, differentially expressed tyRNAsweremore abundant
in patients exhibiting severe disease at both T1 and T2 than in patients with
moderate symptoms.

miRNAexpression is predominantly down-regulated in response
to SARS-CoV-2 infection
A total of 580 high-confidence unique sequences belonging to 143
known miRNA families were identified as significantly differentially
expressed in infected patients with severe and moderate symptoms
(Supplementary Figure 3 and Supplementary Table 5). The miRNA
response was more evident in patients with severe disease, with 110
and 118 altered miRNA families identified at T1 and T2, respectively.
In contrast, only 33 miRNA families at T1 and 17 at T2 were identified

Fig. 1 | Experimental design and bioinformatic analysis. a Overview of the
experimental design, in which sample acquisition is followed by extraction, pre-
paration, and sequencing of sncRNAs. b Bioinformatics pipeline for analysis of
sncRNA sequencing data. c Principal component analysis based on sRNA accu-
mulation. d Histogram showing the relative accumulation (and distribution) of the

total clean reads of sRNAs ranging from 12 to 34 nt from the libraries analyzed.
Controls and different patient groups are represented with colors. Error bars cor-
respond to standard errors. RPM reads per million. Error bars represent mean ±
standard error of the mean.
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as differentially expressed when only moderate symptoms appear.
Down-regulation of miRNAs was the general response to infection. A
high proportion of miRNA families responding to infection were
consistently down-regulated in patients with severe symptoms (90.0%

at T1 and 94.0% at T2). In the case of moderate symptoms, down-
regulated families accounted for 60.6% (at T1) and 64.7% (at T2) of
differentially expressed miRNAs. Only four miRNA families (hsa-
miR-10, hsa-miR-27, hsa-miR-122, and hsa-miR-203) showed an

Fig. 2 |Global landscape of altered sRNAsupon SARS-CoV-2 infection. aGraphic
representation of the expression values (DESeq2) of sRNA sequences for the dif-
ferent conditions against control samples. Each dot corresponds to a given sRNA
expression value. Colors indicate significant differential expression with |log2FC | >
0.585 and FDR < 0.05 for the different sRNA families (sRNAs with non-significant
differential expression are in gray). The category Other is used to label those
endogenous sRNAs that could not be annotated orwere annotated asmiRNAswith a

length not compressed between 19 and 24 nt, lncRNAs, rRNAs, scaRNAs, protein-
coding or miscellaneous RNAs. sRNAs annotated as derived from microorganisms
are colored in light brown. b Detail of the number of sequences differentially
expressed for each sRNA family in the four conditions analyzed. miRNA micro
RNA, tsRNA tRNA-derived small RNA, snsRNA small nuclear-derived RNA,
sdRNA small nucleolar-derived RNAs, tyRNA tiny RNA and piRNA: Piwi-
interacting RNA.

https://doi.org/10.1038/s41540-024-00367-z Article

npj Systems Biology and Applications |           (2024) 10:41 4



inconsistent response, their corresponding elements being ambiva-
lently up- or down-regulated in the four conditions analyzed. In 79
perturbed miRNA families, differential expression was associated
with the infection level (75 to severe and 4 to moderate) and only two
were time-dependent (hsa-miR-576 at T1 and hsa-miR-129 at T2)
(Supplementary Table 5).

Interestingly, six miRNA families displayed a consistent response
in the four groups of infected patients (Fig. 3 and Supplementary Table
5). Five of thesemiRNA families (let-7, hsa-miR-182, hsa-miR-183, hsa-
miR-205, and hsa-miR-2110) were down-regulated and only one (hsa-
miR-16) was up-regulated in response to SARS-CoV-2 infection. These
results are in agreement with previous reports that have largely
described down-regulation of hsa-let-7 in COVID-19 patients28. In
addition, significant down-regulation of hsa-miR-183 and hsa-miR-205
and up-regulation of hsa-miR-16 have been found in blood also in
COVID-19 patients29,30. The remaining down-regulated miRNA
families (hsa-miR-182 and hsa-miR-2110) have not been previously
identified as differentially expressed upon SARS-CoV-2 infection28. To
obtain a comprehensive understanding of the endogenous pathways
susceptible to be influenced by the alterations observed in miRNA
population, we analyzed 212 experimentally validated targets (accord-
ing to the conditions established in the Methods section) of the
sequences included in the six families of miRNAs with consistently
differential expression in response to SARS-CoV-2 infection (Supple-
mentary Table 6). Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis revealedmiRNA-target genes significantly enriched in
diverse regulatory pathways (Supplementary Fig. 4). Considering the
top ten enriched pathways, the phosphatidylinositol 3-kinase/protein
kinase B/mammalian target of rapamycin (PI3K/Akt) signaling and the
EGFR tyrosine kinase inhibitor resistance, two pathways associated to
SARS-CoV-2 infection31,32, were predominantly enriched in both Severe
and Moderate cases. In contrast, miRNA targets enriched in the age-
associated receptor for advanced glycation endproducts (AGE-RAGE)
signaling, a pathway associated to COVID-19 severity33, were only
observed in patients requiring intensive care (severe cases).

5’ tRNA halves derived fromGlu- and Gly-tRNAs encompass the
major tsRNA alteration upon SARS-CoV-2 infection
Differentially expressed tsRNAs were classified according to their tRNA
precursor (Supplementary Table 7). As shown in Supplementary Figure 5,
altered tsRNAs derived from a wide range of tRNAs were detected in
infected patients. Remarkably, tsRNAs derived from glutamyl- (Glu-) and
glycyl-tRNAs (Gly-tRNAs) were the predominant in the list (Supplemen-
tary Fig. 6). Using themedian number of total differentially expressed reads
as a proxy of relative accumulation, on the one hand, we obtained 4.8·104

RPM at T1 andmore than 5·104 at T2 for Glu-tsRNAs when the symptoms
are severe. In the case of a moderate disease, the accumulation of Glu-
tsRNAs dropped, especially at late times where only one sequence derived
from this tsRNA is differentially expressed (i.e., about 3·104 RPM at T1 and
0.19 RPM at T2). On the other hand, we obtained a poor relative accu-
mulation of Gly-tsRNAs when the symptoms are severe (i.e., about 2.5·102

RPM at T1 and 2.7·103 RPM at T2). In contrast, Gly-tsRNAs accumulated
substantially in patients with moderate symptoms at early times (i.e., about
5·104 RPM at T1 and 5.9·103 at T2).

We next inspected the particular type of tsRNA that accumulates in
response to the virus. We classified these highly accumulating tsRNAs
according to their biogenesis as if they were derived from 5’ or 3’ arms and
according to their length (i.e., halves for ≥ 30 nt or tRF for < 30 nt). Of note,
5’ tsRNA-halves were the more abundant species, whereas tsRNAs of
smaller size (5’ tRFs) were less abundant (Fig. 4). A marginal proportion of
tsRNAsderived from the 3’ armof bothGlu- andGly-tRNAswas recovered.
Collectively, these results suggest that these tsRNAs might be exploited as
biomarkers, not only to infer the presence of the virus (through the mon-
itoring of Glu-tsRNAs), but also to predict the outcome of infection (ele-
vated levels ofGly-tsRNAs at early timeswere only observed inpatientswith
moderate symptomatology).

SARS-CoV-2 infection leads to a down-regulation of C/D-
box sdRNAs
Small RNAs derived from 77 parental snoRNAs showing differential
expression were identified. These sdRNAs were predominantly

Fig. 3 | Expression levels of different miRNA families with consistent differential
expression in the four groups analyzed. Boxplot representation (on the top,
patients with severe symptoms; on the bottom, patients with moderate symptoms).
Each dot represents the expression value (log2FC) of a sequence in infected patients

(T1 or T2) with respect to the non-infected control. In boxplots, the central lines
depict themedian, while the box boundaries represent the upper and lower quartiles.
The whiskers extend to the first or last data point within 1.5x the interquartile range
of the box boundaries in the lower and upper directions, respectively.
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characterized by significant down-regulation in all four groups of
COVID-19 patients analyzed in this work (Supplementary Figure 7 and
Supplementary Table 8). This decrease was more evident in patients
with severe symptomatology. In this case, down-regulated sdRNAs
derived from 60 (at T1) and 63 (at T2) different parental snoRNAs
(Supplementary Figure 7). Although down-regulation was also the
predominant pattern in patients with moderate symptoms, fewer
classes of sdRNAs were observed (32 at T1 and 26 at T2). Regarding the
type of parental snoRNAs, a high proportion of them were categorized
as of C/D-box type. In tune with previous characterizations, those
sequences close to 27 nt in length were the predominant class of
sdRNAs recovered (Supplementary Figure 8). Interestingly, we found
23 different precursors associated systematically with the four infection
conditions analyzed (Supplementary Table 8).

SARS-CoV-2 infection alters the accumulation of tyRNAs
According to their well-established biogenesis pathway, only 13–14 nt
in length sequences fully matching the 5’ end of a mature miRNA were
considered high-confidence miRNA-derived tyRNAs18. We detected 8
tyRNAs with significant differential accumulation in COVID-19
patients (Supplementary Figure 9 and Supplementary Table 9). As
occurred with the miRNA population, tyRNA alteration was more
evident in patients with severe symptoms. In this case, three tyRNAs

were significantly down-regulated at T1 (hsa-miR-378-tyRNA, hsa-
miR-149-tyRNA, and hsa-miR-200-tyRNA) and other three up-
regulated (hsa-miR-5087-tyRNA, hsa-miR-125-tyRNA, and hsa-let-
7-tyRNA). Moreover, two tyRNAs were significantly up-regulated at
T2 (hsa-miR-10400-tyRNA and hsa-miR-210-tyRNA), while hsa-
miR149-tyRNA was also down-regulated at late times. With respect to
patients with moderate symptoms, hsa-miR-5807-tyRNA was up-
regulated at both T1 and T2.

Sequencing data verification by stem loop RT-qPCR
To verify in part our RNA sequencing analyses by an independent
experimental method, we used stem loop reverse transcription quan-
titative polymerase chain reaction (RT-qPCR) to process additional and
independent nasopharyngeal samples derived from SARS-CoV-2-
infected and non-infected patients. We selected five different sequen-
ces that resulted overexpressed upon SARS-CoV-2 infection. These
sequences represented three different types of sRNAs: two miRNAs
(hsa-miR-16-3p and hsa-miR-16-5p), two tsRNAs (Glu-tsRNA and
Gly-tsRNA), and one sdRNA (snord-55). As it is shown in Supple-
mentary Table 10, the sRNA accumulation values estimated by stem
loop RT-qPCR for the five analyzed sequences were consistent with
those obtained by RNA sequencing, also showing significant over-
expression in response to SARS-CoV-2.

Fig. 4 | Expression profiles of altered Glu-tRNA- and Gly-tRNA-derived sRNAs
for each condition. Four classes of tRNA-derived sRNAs are represented: 5’tRF,
3’tRF, 5’tR-half, and 3’tR-half. Dots indicate the absolute accumulation in reads per
million (RPM) of differentially expressed sequences classified as Glu-tsRNA or Gly-
tsRNA in control and infected samples for each condition (severe/moderate

symptoms, T1/T2 time). In boxplots, the central lines depict the median, while the
box boundaries represent the upper and lower quartiles. The whiskers extend to the
first or last data point within 1.5x the interquartile range of the box boundaries in the
lower and upper directions, respectively.
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Discussion
Different studies have described the impact of SARS-CoV-2 infection on the
sncRNA population of humans. However, these efforts have been pre-
dominantly focused on the analysis of alterations in circulating miRNA
profiles recovered from blood or plasma28,34. Here, we performed an inte-
grative analysis aimed at assessing the impact of infection on the global
landscape of the different regulatory RNAs in human cells. For that, naso-
pharyngeal samples obtained from COVID-19 patients with different dis-
ease severity and at two time points were processed. Our results suggest that
SARS-CoV-2 infection is associated with a significant imbalance of diverse
sdRNAs, miRNAs, tsRNAs, and tyRNAs.

The detection of diverse miRNA families with significant differential
expression in COVID-19 patients coincides with early studies showing that
SARS-CoV-2 infection provokes a robust host miRNA response that might
improve COVID-19 detection and patient management35. A first global
analysis of the miRNA response to infection showed a strong association
between disease severity and alterations in the miRNA population. The
number of differentially expressedmiRNAswas higher in patients requiring
intensive care unit admission (severe symptoms) than in those exhibiting
moderate symptoms. This observation associating disease intensity with
alterations in miRNA expression is consistent with previous findings from
the analysis of sRNAs recovered fromblood8 and plasma9 samples of SARS-
CoV-2-infected patients. Regarding miRNAs with differential accumula-
tion in the four infection phases/stages analyzed here, it is important to
highlight the presence of hsa-let-7. Members in the miRNA let-7 family are
highly conserved across species, from C. elegans (the organism in which it
was discovered) to humans36. In mammals, hsa-let-7 is involved in the
regulation of critical physiological processes, such as organ development,
growth, tissue regeneration, metabolism, cancer proliferation and mod-
ulation of viral infection36,37. A recent work has reported that a member of
this family (hsa-let-7b) is involved in the regulation of Angiotensin-
converting enzyme 2 (ACE2) and Dipeptidyl peptidase-4 (DPP4), two pri-
mary receptor proposed to play a key and complementary role in virus entry
and disease progression38. Additionally, computational predictions have
suggested that hsa-let-7 might target SARS-CoV-239 and might also parti-
cipate in the regulation of target genes involved in immune response
pathways40.Ourfinding that thehsa-let-7 family is highlydown-regulated in
COVID-19 patients at different stages of infection (early and late) and
disease intensity (moderate and severe) provides further support to the
relationship between hsa-let-7 and SARS-CoV-2. The hsa-miR-182 was
another down-regulatedmiRNA strongly associated with the infection and,
to our knowledge, this miRNA family had not previously been reported as
perturbed inCOVID-19 patients. This particular observationmay be due to
the fact that, in general, previous infection-associatedmiRNA analyses have
been performed using blood or plasma, rather than nasopharyngeal sam-
ples. Interestingly, it has been hypothesized through computational studies
that the hsa-miR-182 miRNA family might recognize the SARS-CoV-2
genome as a potential target and, consequently, that its reduced expression
might be associated with host susceptibility to infection41. Regarding the
KEGG pathways enriched for validated miRNA-targets, at least three of
them PI3K/Akt42, EGFR43 and RAGE44 have been previously suggested as
potential pharmacological targets for the treatment of COVID19.

An emerging question related to COVID-19 is how can the virus
infection lead to the alterations observed in endogenous miRNA popula-
tion. The direct interaction between the virus and human proteins could be
one of the causes responsible of the transcriptional effects associated with
diseases induced by coronavirus in general45 and SARS-CoV-2 in
particular46,47. Interestingly, it has been showed that the SARS-CoV-2 N
protein is able to bind toDICER1 and that theGO term “Regulation of gene
silencing mediated by miRNAs” is significantly enriched when the global
SARS-CoV-2-human protein-protein interactome is analyzed47,48, suggest-
ing the potential capacity of certain viral proteins to interfere in themiRNA
biogenesis. This possibility is consistent with the previously reported the
functional interaction between the Human-Nipah virus M protein and the
DICER1-TARBP2 complex49. Moreover, the observation that the

expression of genes related to miRNA processing is not affected during
SARS-CoV-2 infection50 provides additional support to this notion.

Recent studies have reported the differential expression of tsRNAs in
blood8, plasma9, and nasopharyngeal swabs51,52 from COVID-19 patients.
However, the small number of samples or the lack of information about the
severity and time of infection limit these initial analyses. This point acquires
particular relevance considering that altered tsRNA profiles in diverse cell
type or tissues emerge as great tools from which to disclose novel potential
biomarkers for early diagnosis and prognosis of physiological disorders53

such as diverse cancer types54,55, neuronal disorders56 and viral infections57,58.
Our results reinforce the significant expression alteration of tsRNAs in
response to SARS-CoV-2 infection. Sequences derived from Glu- and Gly-
tRNA precursors were the most abundant in COVID-19 patients. In par-
ticular, the Glu-tsRNAs were the predominant forms in severe infections at
both time points, whereas the accumulation ofGly-tsRNAswas increased in
moderate cases at early stages of the infection. Considering the type of
tsRNAs, we observed that 5’ variants accounted for virtually all Glu- and
Gly-tsRNAs recovered from infected patients. In contrast, 3’ variants of
tsRNAs were recently described as highly accumulated markers in blood
samples of patients with severe symptoms8. These results suggest that,
although differential accumulation of tsRNAs emerges as a general phe-
nomenonassociatedwithSARS-Cov-2 infection, its specificprocessing (and
consequently the class of tsRNA detected) could be related to the disease
intensity, infection stage, and the type of sample considered for the analysis.
In this regard, a recent study conducted in cell culture has found that a group
of tsRNAs upregulated in response to SARS-CoV-2 infection was not
altered during infection with SARS-CoV or other viruses tested59. Even
though the role played by tsRNAs during SARS-CoV-2 infection is
unknown, it is important to note that it has been proposed that certain
tRNA-derived RNAs acting as siRNAs are able to silence in trans host target
transcripts in order to favor the replication of respiratory syncytial virus
(RSV)57,60. Further studies are needed to elucidate whether a similar tsRNA-
mediated mechanism underlies SARS-CoV-2 pathogenesis.

While the functional relevance of sdRNAs is currently unknown, their
abundance suggests yet poorly described regulatory roles, such as a novel
source ofmiRNAs and siRNAs61. According to our results, various sdRNAs
were differentially expressed during SARS-CoV-2 infection. Although this
response was more evident in patients with severe disease, a significant
down-regulation of sequences derived from various parental snoRNAs was
observed in all four cases analyzed. In agreement with what has been
described in other pathological conditions, such as cancer62 or further viral
infections63, sdRNAs derived from snoRNA C/D-box precursors were the
predominant forms differentially expressed in COVID-19 patients. With
the exception of one study based onmicroarray technology25, our RNA-Seq
results are pioneer in supporting a link between SARS-CoV-2 and the
sdRNA population.

Another contribution of our research is the identification of differential
tyRNAs in COVID-19 patients. TyRNAs constitute an emerging and
intriguing class of sncRNAs, and they had not previously been associated
with SARS-CoV-2 infection. In contrast to the observation for themiRNAs
(their well-established precursors), up-regulation of tyRNAs was the pre-
dominant response to infection. To date, it is not widely accepted that
tyRNAs constitute a representative class of regulatory sRNAs in mammals,
and the only functional role proposed for these sRNAs is associated with
neurodegenerative diseases18, making it difficult to draw any conclusion
about their relationship to SARS-CoV-2 infection. In this regard, the
potential functional role of this little-known regulatory layer during disease
would require further attention.

In sum,our results provide an integrative viewof the sncRNAsignature
in severe and moderate cases of COVID-19 at different time points of
infection.We acknowledge that the lack of subsequent functional validation
of the regulatory activity of the identified sncRNAs and the fact that the
study was conducted using nasopharyngeal samples, rather than other
biological fluids that could offer a more precise picture of circulating
sncRNAs (such as blood or lymph), might constitute a limitation of our
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study. However, the valuable information derived from our detailed com-
putational analysis could be used for the identification of alternative bio-
markers for diagnosis and/or prognosis. Indeed, it has recently been
proposed that accurate expression profiling of disease-associated miRNAs
(MDAs) combined with machine learning or deep learning strategies can
serve as an innovative diagnostic tool for various physiological disorders in
patients64,65, including certain types of sclerosis66, Lyssavirus infection67, and
COVID-1968. Hence, this comprehensive study might provide, once the
regulatory pathways involved in the sncRNA-mediated response are char-
acterized, a new perspective for the development of innovative therapeutic
and/or prophylactic strategies for the control and management of SARS-
CoV-2 infection.

Methods
Patient samples
Nasopharyngeal (swabs or aspirates) samples corresponding to infected and
non-infected patients with SARS-CoV-2 were obtained from the Clinic
University Hospital of Valencia (Spain). Samples were collected in a uni-
versal transport medium (Beckton Dickinson or Copan Diagnostics). Data
were anonymized, so that the patient’s identification data were separated
from the clinical-care and demographic data. In any case, a waiver of
informed consent was requested to the ethical committee to perform this
research study. The ethical committee of the Clinic University Hospital of
Valencia approved this study (order #2020/221). Samples were gathered
during the first wave of the pandemic (April–June 2020), when only
ancestral SARS-CoV-2 variants were in circulation69. In total, 50 samples
were used in this study, which included 20 SARS-CoV-2 positive samples,
collected at two different times (separated by 14 ± 4 days), and ten non-
infected control samples. COVID-19 patients were classified according to
whether they showed severe (10 cases) or moderate (10 cases) symptoms.
The severe category comprises patients who required admission to the
intensive care unit.

RT-qPCR
Nucleic acid extraction was performed from undiluted samples using the
Qiagen EZ1 Viral extraction kit or the DSP virus Pathogen Minikit using
EZ1 or Qiasymphony Robot instruments (Qiagen), respectively. The fol-
lowing commercially available RT-qPCR assay for SARS-CoV-2 testingwas
used in the hospital: REALQUALITY RQ-2019-nCoV from AB ANALI-
TICA on the Applied Biosystems 7500 instrument. This RT-qPCR assay
analyses the E (envelope) and RdRp (RNA-dependent RNA polymerase)
genes of SARS-CoV-2 in a single reaction70.

Total RNA isolation
Sampleswere inactivated by heat shock (30min at 60 °C) before proceeding.
Sampleswere split in two fractions of 250 μL and each fractionwas subject to
the following protocol. To 250 μL of sample, 750 μL of TRIzol LS reagent
(Invitrogen) was added and mixed to homogenize. Samples were incubated
for 5min at room temperature and themixwas transferred to phase-lock gel
tubes (Invitrogen) and then were incubated for additional 3min. At this
point, 200 μL of chloroform-isoamyl alcohol was added to each sample and
then thoroughly mixed by shaking. Samples were incubated for 15min at
room temperature and centrifuged for 15min at 12,000 g and4 °C. 500 μLof
the aqueous phase of each sample was transferred to a new tube and 500 μL
of isopropanol was added. Samples were incubated for 10min at 4 °C and
then centrifuged for 10min at 12000 g and 4 °C. Supernatants were dis-
carded andRNApellets werewashed twicewith 750 μL 75% ethanol (5min,
7500 g, 4 °C). Supernatants were discarded and RNApellets were left air dry
for 5min. Then, RNApellets were resuspended in 25 μL ofDEPCwater and
1 μL of each sample was quantified using a NanoDrop (Thermo) device.

Small RNA sequencing
Production and sequencing of the libraries were carried out by Novogene
(https://en.novogene.com) according to their standard procedures. Briefly,
sRNA libraries were directly generated from total RNA using TruSeq Small

RNA Library Prep Kit (Illumina). The 3’ and 5’ adaptors were sequentially
ligated to the RNA prior to reverse transcription and cDNA generation.
cDNAswere enriched by PCR to create the indexed double stranded cDNA
library. Size selection was performed using 6% polyacrylamide gel. The
quantity of the libraries was determined by quantitative real-time PCR and
an equimolar pooling of the libraries was performed. The cDNA libraries
were sequenced following a single-batch strategy on a NOVASEQ 6000
machine (Illumina).

Quality control and quantification of the sequences
The adaptor removal and size selection of the raw FASTQ files was per-
formed with Unitas (v1.8.0)71 selecting the sequences in the range of 12–34
nt. After visual inspection of Unitas summary, those files whose overall
profile might denote sample degradation, high percentage of unannotated
sequences, and/or highpercentage of sequences annotated as rRNA, protein
coding, or lncRNAs were excluded. After this filtering, two samples per
patient group were discarded for subsequent analysis.

For quality control purposes, the remaining libraries were aligned
against the human genome of GENCODE (47) GRCh38 (v.38), those
sequences that did not align against the human genome were then aligned
with the SARS-CoV-2 genome (NC_045512.2). The alignment was per-
formed using Bowtie (v1.3.1)72 with the parameters -n 1 -l 10 -k 1 –best.
Quantification and removal of sequences containing indeterminacies were
performed using in-house Python scripts. Both absolute and normalized
(RPM) counts were obtained for each sample. The individual results were
joined to create thematrix of counts used for differential expression analysis
and visualization purposes. To study the correlation exhibited by the sRNA
expression profiles among the different groups and samples, principal
component analysis (PCA)wasused. PCAwasperformedusing theprcomp
functionof the statsRpackage (v4.2.2) (https://www.r-project.org/)with the
matrix of absolute counts (filtered considering only the sequences with 5
counts in at least five samples of any of the groups), which was normalized
by size factor and transformed with the vst function, both functions of the
DESeq2 R package (v1.36)73. The 1000 sequences with the highest variance
were selected for plotting.

Annotation of the sequences
The annotation of the clean reads of each of the librarieswas performedwith
Unitas, which internally uses the aligner Seqmap (v1.0.13)74, with the fol-
lowing parameters: allowing one internal modification (default value) but 0
non-template 3’ nucleotides (-tail 0) for miRNA annotation, and allowing
onemismatch (default value) and one indel (-insdel 1) for the rest of ncRNA
annotation. The software for the annotation used the following resources:
miRBase (v22.1)75, gtRNAdb (accessed on May 2023)76, piRNA cluster
database (accessed on May 2023)77, Ensembl (release 108), EnsemblGen-
omes (release 55)78 and SILVA (release 132)79. All the individual annotations
obtained per sample were filtered, selecting only the first annotation pro-
vided by the software, and collapsed into one unified annotation at unique
sequence level. For the studyofmiRNAscertainmodificationsweremadeon
the Unitas classification. For the annotation of differentially expressed
miRNAs, only those sequences annotated as such and between 20 and 24 nt
were considered “truemiRNAs”, the rest were classified as “miRNA-like”. In
addition, for the analysis by families, only those “true miRNAs” annotated
with 0 mismatches were considered. As for tyRNAs annotation, we selected
those “miRNA-like” sequences of 13 and 14 nt, mapped with Scram
(v0.2.2)80 against miRBase mature miRNA sequences (v22.1) and selected
those sequences thatmapped on the positive strand andwith start position 1
or 2. Regarding the analysis of tsRNAs,Unitas results werefiltered to discard
sequences coming from mitochondrial tRNAs, and only tsRNAs from the
categories 5’ tRF, 3’ tRF, 5’ tR-half and3’ tR-halfwere considered. Exogenous
small RNA identification of the reads that could not be annotated by Unitas
was performed with Centrifuge (v1.0.4)81 against the database provided by
the software authors (hpvc) containing the human genome, prokaryotic
genomes and viral genomes downloaded from Genbank on March 2020
(https://zenodo.org/record/3732127/files/h+p+v+c.tar.gz?download=1).
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Differential expression analysis
DESeq2wasutilized to conduct adifferential expressionanalysis,whichuses
raw read counts as input and estimates the Log2 Fold Change (log2FC)
along with its corresponding standard error (SE). The raw read counts
matrix was filtered considering only the sequences with 5 counts in at least
five samples of any of the groups. Raw counts were normalized with the
DESeq2 median of ratios method. Hypothesis testing was performed by a
Wald test looking for log2FC > 0.585 (i.e., FC > 1.5 or FC < 0.667), and the
Benjamini-Hochberg procedure was subsequently used to adjust for mul-
tiple hypothesis testing. Tobe consideredadifferentially expressed sequence
an FDR threshold of < 0.05 was applied. The LFC shrinkage function in
DESeq2, lfcShrink(), was used to shrink fold changes for sequences with
higher variance.

miRNA target identification and KEGG enrichment analysis
The miRNA host targets were retrieved from miRTarBase82. The human
miRNA target interaction (MTI) file (release 9.0) was filtered to keep only
thoseMTIs supported by at least two validationmethods targeted as “strong
evidence”. The members of the six miRNA-families consistently differen-
tially expressed in the four groups of analyzed infected patients were
intersected with the targets. KEGG83 enrichment analysis of the resultant
miRNA-target genes was performed using the function enrichKEGG of the
package ClusterProfiler84 (v4.10).

Stem loop RT-qPCR
Quantification of five selected sRNAs was performed from nasopharyngeal
samples corresponding to3non-infectedand3SARS-CoV-2 infectedpatients
(Supplementary Table 10), starting from small RNA ( < 200 nt) enriched
fractions using REALTOTALmicroRNAKit (RBMER14, Durviz) according
to the manufacturer’s instructions. Stem-loop-specific reverse transcription
formiRNAsdetectionwasperformedaspreviouslydescribed in ref. 85using a
RevertAid cDNASynthesis Kit (Thermo Scientific). All analyseswere done in
triplicate on a QuantStudio qPCR instrument (Thermo Scientific™) using a
standard protocol. Relative RNA expression was quantified by the com-
parativeΔΔCTmethod86 and normalized to the geometricmean of the small-
nucleolarRNAsRNU48 (ANX96648.1), a reference gene commonlyused for
miRNAs estimation by RT-qPCR in humans87. The statistical significance of
the observed differences was evaluated by the paired t-test. Primers used for
amplification assays are detailed in the Supplementary Table 11.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The data have been deposited with links to BioProject accession number
PRJNA982620 in theNCBIBioProject database (https://www.ncbi.nlm.nih.
gov/bioproject).

Code availability
All the necessary components, including scripts, software versions, and
additionalfiles required to replicate the study’sfindings can be found on our
GitHub page (https://github.com/ncRNA-lab/sRNA_covid19).
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