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The transmission bottleneck describes the number of viral particles that
initiate an infection in a new host. Previous studies have used genome
sequence data to suggest that transmission bottlenecks for influenza and
SARS-CoV-2 involve few viral particles, but the general principles of virus
transmission are not fully understood. Here we show that, across a broad range
of circumstances, tight transmission bottlenecks are a simple consequence of
the physical process of airborne viral transmission. We use mathematical
modelling to describe the physical process of the emission and inhalation of
infectious particles, deriving the result that that the great majority of trans-
mission bottlenecks involve few viral particles. While exceptions to this rule
exist, the circumstances needed to create these exceptions are likely very rare.
We thus provide a physical explanation for previous inferences of bottleneck
size, while predicting that tight transmission bottlenecks prevail more gen-
erally in respiratory virus transmission.

The SARS-CoV-2 pandemic sparked a broad range of interest in both
the mechanism and the risks of viral transmission. Early in the pan-
demic, the mechanism of viral transmission was a matter of con-
troversy, with a claim that transmission occurred either via contact or
by the short-range spread of emitted droplets omitting the potential
for longer-range airborne transmission’. Subsequent work highlighted
the importance of aerosolised particles in causing long-range airborne
transmission’ while downplaying the importance of contact-driven
events’.

Studies of the risk of transmission examined the relationship
between transmission and the environment, with for example higher
rates of transmission being found in household compared to work-
place environments*. Quantitative models were developed, assessing
the risk of infection in a different scenarios’®, modelling the rela-
tionship between risk and exposure time’, and explaining the role of
masks in preventing viral spread'®. CO, monitoring was suggested as a
means to evaluate the immediate risk of transmission".

While risk calculations consider whether a person might be
infected, evolutionary biology poses a different question: If a person
was infected, how many viruses initiate that infection? This number of
viruses, denoted the transmission bottleneck’, has important con-
sequences for virus evolution: The tighter the bottleneck, and the

fewer particles get through, the less genetic diversity will be trans-
mitted between individuals. The absence of initial diversity can limit
the potential for within-host evolution, as variants need to be gener-
ated de novo before evolutionary changes can take effect®.

Studies of genomic data have suggested that for influenza and
SARS-CoV-2 infection, the transmission bottleneck generally involves
few viral particles'", with potentially a single virus initiating infection.
Different genomic approaches have been applied to this question. In
animal models, barcoded viruses allow for a straightforward count of
the number of viruses initiating infection’®, Where barcoding is not
possible, deep sequencing of a viral population has been used to assess
the appearance or non-appearance of minor variants following the
bottleneck' or to evaluate changes in variant frequencies during the
transmission process’®*. Genomic studies have some limitations.
Collecting genomic data from individuals is time-consuming and
expensive, while the results of such studies may reflect only the spe-
cific circumstances of the individuals involved. The estimation process
itself requires some care: the false identification of variants has the
potential to inflate the estimated bottleneck size***. Errors in identi-
fying who infected who could also potentially distort results.

We here take an alternative approach to estimating respiratory
virus transmission bottleneck sizes. Rather than considering only
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specific circumstances or data, we outline a general solution, exploit-
ing knowledge of the physical processes underlying viral
transmission®*?’ to build a physical model of virus transmission. Within
this model, we exploit knowledge from an extensive past literature®,
Coughing, speaking and sneezing have been shown to emit broad and
distinct distributions of particle sizes?**'. Emitted particles are affec-
ted by evaporation, sedimentation and diffusion®’. Ventilation reduces
the mean concentration of particles in the air, while in the absence of
immediately finding a new host, viruses in emitted particles begin to
decay®. Combining insights from this literature, we assess the expec-
ted transmission bottleneck for infections that occur under a variety of
scenarios. Our results provide a strong indication, independent of
genome sequence data, that most cases of respiratory virus trans-
mission will involve a tight population bottleneck.

Results

Constant levels of exposure

A simple model, based upon a Wells-Riley model of exposure, sug-
gested that transmission bottlenecks arising from exposure to a
respiratory virus are likely to be tight (Fig. 1). We made the simplifying
assumptions that all individuals in an environment receive the same
level of viral exposure and that viruses cause infection independently
of one another. Under these assumptions, bottleneck sizes are small
unless a very large proportion of individuals present in an environment
are infected. The Skagit choir superspreading event was an extreme
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Fig. 1| Transmission bottleneck estimates under a Wells-Riley model of
exposure. In this model, the level of exposure describes the rate parameter of a
Poisson model, such that a person receiving an exposure of 1 would expect to be
infected by one virus. a The probability of an individual being infected given the
level of exposure. b The proportion of cases of infection in which a single virus
initiates infection. ¢ The proportion of cases of infection in which ten or fewer
viruses initiate infection. The vertical grey bar provides an estimate of circum-
stances at the Skagit Choir superspreading event, characterised by the probability
of infection. Even under these circumstances, the model suggests that transmission
bottlenecks are likely to be small.

case early in the SARS-CoV-2 pandemic whereby between 32 and 52 of
61 people present at a choir rehearsal were infected®. Even in this
extreme case, our model predicted that between 33% and 75% of cases
of infection were initiated by a single viral particle, with more than 99%
of cases being initiated by fewer than 10 viruses.

Variable levels of exposure

More complex models of exposure produced similar results, sug-
gesting that the transmission bottlenecks produced by respiratory
infection are generally tight. A straightforward approach to expanding
our initial model is to incorporate overdispersion into the exposure
levels; this did not substantially change the results obtained (Supple-
mentary Fig. 1, Supplementary Note 1). To achieve a more realistic
estimate of the extent to which exposures vary, we implemented a
physical model of virus transmission. Our model describes the
emission by an infected individual of virus-containing particles with a
distribution of sizes, by default modelling a process of coughing.
Emitted particles may contain more than one virus, according to their
size. Particles are subject to evaporation and spread through the air
by diffusion. They are lost from the air due to ventilation and
sedimentation. Viruses within particles are inactivated over
time (Fig. 2a).

Levels of physical exposure were calculated based on estimated
inhalation rates and then converted into viral exposures (Fig. 2b). Our
model describes an effective viral load, defined as the number of
viruses per ml of emitted material that initiate infection, having over-
come the various barriers, whether physical or immunological, to
achieve this. The effective viral load is by nature smaller than the
absolute number of viruses contained within an emitted particle: One
study has estimated the proportion of emitted SARS-CoV-2 viruses that
are viable (measured experimentally via plaque- or focus-formation in
cells facilitating infection) as roughly 1 in 3000%, Plaque formation is
likely a necessary requirement for a virus to cause infection but may
not be sufficient: A virus that would form a plaque under laboratory
conditions might not be able to cause infection in a host.

Applied to four different environments and run under default
parameters, our model suggested that respiratory viral infection arising
following coughing is associated with a tight transmission bottleneck.
Clear environmental impacts upon exposure were evident, with the
highest exposure occurring at close proximity in the poorly ventilated
lounge. In the bus, a very broad distribution of exposures was found,
with the simulated absorption of particles by the sides of the bus
leading to low exposures far from the infected person (Supplementary
Fig. 2). Transmission bottlenecks were not universally tight: One of the
multiple simulations we generated describing the nightclub environ-
ment included a case where 391 viruses initiated infection. However, in
all the environments and under our default parameters, more than 98%
of transmission events were predicted to involve ten or fewer viruses,
with the majority of cases of infection being initiated by a single viral
particle (Fig. 3).

The outputs from our model include a parameter, R, describing
the expected number of cases of infection occurring in each environ-
ment. This parameter is akin to the common epidemiological para-
meter Ry. Where Ry describes the expected total number of infections
caused by an infected individual during the entire course of an infec-
tion in the absence of population immunity®, R.,, describes the
expected number of infections caused by an infected individual in a
specific environment, given the number of uninfected individuals
present, their relative positions, the length of time spent in that
environment, and the prevailing environmental conditions. Under our
default parameters, these numbers were generally small, ranging from
0.058 in the bus to 0.271 in the nightclub, reflecting the limited time
modelled in each scenario. The value of 0.067 in the office environ-
ment is a feature of our default model, calculated from the R, value of
the original Wuhan strain SARS-CoV-2 virus (see Supplementary
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Fig. 2 | Method for simulating transmission events. a A computational model
described the emission and subsequent dynamics of virus-containing particles
following a single cough. We modelled the diffusion of particles of different sizes
through space and time, accounting for evaporation, sedimentation, ventilation,
and the inactivation of viruses within infectious particles. Our model describes the
time- and location-dependent concentration of infectious material within an
environment. b Our model facilitates the calculation of the cumulative volume of

infectious material that we would expect for different individuals in an environ-
ment. Specifying an effective viral load, or alternatively the parameter Ry, which
describes the expected number of infections to occur within an environment,
generates viral exposures, which describe the expected number of infectious
viruses that initiate infection within each person: The outcome of exposure, whe-
ther infection or non-infection, is characterised by this viral exposure.

Methods 1). Keeping the level of physical exposure constant, an
increase in the effective viral load leads to an increase in Reny.

Large bottlenecks at very high effective viral load

Under our default model, tight transmission bottlenecks were inferred
to dominate in all but exceptionally high values of the effective viral
load (Fig. 4a, b). Most transmission events involved 10 or fewer viral
particles unless the effective viral load was greater than 10°2 per ml.
This value is greatly in excess of an estimated upper bound for the
number of plaque-forming units at peak viral load during SARS-CoV-2
infection®. At this concentration, high transmission bottlenecks occur
following the inhalation of even a single emitted particle: A particle of
radius 10 pm would be expected to contain more than 6 effective
viruses.

In most of the environments we simulated, one person coughing
was not sufficient for everyone present to inhale a single emitted
particle. As such, not everyone in the environment was infected, even
at extremely high simulated effective viral loads (Fig. 4c). Alternative
models described higher levels of particle emission. For example, a
model of continuous, uninterrupted speech, while allowing for
asymptomatic transmission, generated higher volumes of particles
than did coughing. Increased volume excepted patterns of physical
exposure from speaking were similar to those derived from coughing
(Supplementary Fig. 3). The increased volume emitted led to an
increase in the values of R, in each environment. Compared to the
coughing model, a decrease in the proportion of infections initiated by
a single viral particle was inferred for the lounge environment, but
otherwise, results were very similar (Supplementary Fig. 4). Most
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Fig. 3 | Bottleneck size distributions calculated for different scenarios. Maps
show the layouts of different environments. A red dot indicates the location of an
infected person, with the red arrow showing the direction in which emissions occur.
A white dot indicates the location of an uninfected person. In our model, indivi-
duals were assumed to remain stationary. Furniture did not affect the model and is
shown for purely illustrative reasons. Data show the room dimensions. Ventilation
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levels are described by the number of air changes per hour (ACH). The value Reny
describes the expected number of people infected in an environment during the
modelled time of exposure. Bottleneck size distributions show empirical prob-
abilities calculated from an ensemble of 10° simulations generated for each
environment.

transmission events still involved 10 or fewer viral particles unless the
effective viral load was greater than 10® per ml, again substantially
above published estimates for SARS-CoV-2 infection (Supplemen-
tary Fig. 5).

Large bottlenecks during extreme superspreading

Modelling identified a second scenario in which larger bottlenecks
could prevail. If a highly effective viral load is combined with a very
large volume of infectious material is emitted, most infections are
initiated by more than 10 viral particles. We generated variants of the
coughing model in which the volume of particles emitted was arbi-
trarily increased. At exceptionally high volumes of emission, the need
for individuals present to inhale an emitted particle is no longer a

consideration; nearly everyone present receives some physical expo-
sure. This implies that, above a threshold effective viral load, everyone
is likely to be infected, while at some higher threshold effective viral
load, everyone is likely to be infected by more than 10 viral particles.
The exact values of thresholds were environment-dependent, being
affected by the distribution of physical exposures.

With a 1000-fold increase in emission volume, simulation data
suggested that most infections in the office environment were likely to
be initiated by more than 10 viral particles if the effective viral load was
in excess of 107 per ml (Fig. 5). At this threshold R.,,, was close to the
hypothetical maximum value of 8, such that everyone present was
highly likely to be infected. For the nightclub, a threshold effective viral
load implied a R.,, value close to 100. Our lounge environment was
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Fig. 4 | Inferred statistics of transmission bottleneck sizes given changes in the
effective viral load. Statistics were calculated from an ensemble of 10° simulations
for each combination of environment and effective viral load. Lines connect points
calculated at different viral loads. The dashed vertical black line shows the mean
number of plaque-forming units at the peak of SARS-CoV-2 infection, while the grey
shaded area shows a 95% confidence interval for this statistic*’. The solid vertical
black line shows the effective viral load as specified in the default parameters of our
model. Statistics are shown describing (a). The proportion of transmissions with
bottleneck size 1. b The proportion of transmissions with bottleneck size 10 or less.
¢ The expected number of people infected in each environment, R,,. Horizontal
dashed lines in this figure indicate limit values for each environment, as would
occur given a theoretically infinite effective viral load.

designed to maximise physical exposure, with a single individual being
in prolonged short-range proximity to an infected individual in an
environment characterised by poor ventilation. At 1000-fold increased
emission volume, most infections in the lounge were likely to be
initiated by more than 10 viral particles at an effective viral load of
close to 108, still high but within biological plausibility. In the bus the
high level of variation in physical exposure levels meant that 1000-fold
increased emissions were still not sufficient to infect everyone present.

This high-emission, high-viral load scenario represents exposure
to overwhelming numbers of viruses. The identification of super-
spreading events early in the SARS-CoV-2 pandemic®** suggests that
such a scenario could be biologically plausible. Behaviours such as

singing or shouting would generate higher volumes of emission than
our model of speech®. However, basic epidemiology suggests that
these events are rare: the single-figure values of Ry associated with
most respiratory viruses are not compatible with a situation in which
infected people transmit the disease to the majority of their contacts.

Conclusions

Concluding our analysis, we note that individual cases of transmission
involving multiple viral particles may arise under unspectacular cir-
cumstances: In our default model between 1 and 3% of transmissions
involved more than 10 viruses. However, a scenario in which the
majority of transmission events involve more than 10 viruses is unli-
kely, requiring a very high effective viral load, possibly combined with
abnormally high levels of particle emission. Our model is para-
meterised in a way that is consistent with SARS-CoV-2 infection but is
not specific to that virus. Where a virus is spread by respiratory
transmission, if Rq is not exceptionally high, the physical process of
airborne transmission will lead to mostly tight transmission
bottlenecks.

Our model may be elaborated in a variety of ways, considering, for
example, the movement of people within an environment, emissions
via sneezing, changes in ventilation levels, or variable levels of infec-
tivity. None of these changes produced substantial changes in our
basic results. Details are given in Supplementary Note 2.

Discussion

We have here applied two distinct modelling approaches to consider
the transmission bottleneck sizes generated by respiratory viral
transmission. In a first, highly simplified approach, we showed that, in
a case where all exposed individuals receive an equal level of expo-
sure, the Poisson assumption underlying the Wells-Riley model
implies that the great majority of transmission events involve a small
number of viral particles, even in cases where a high proportion of
individuals present are infected. We next considered a more com-
plex, though still approximate method, in which different individuals
received different exposures, calculated from a physical model
describing particle emission and spread. In this latter model, we
identified that the airborne transmission of viruses is dominated by
tight transmission bottlenecks in all but two cases. Firstly, if the
effective viral load is sufficiently high, the inhalation of a single
emitted particle will result infection by several viruses so that
transmission bottlenecks will be high irrespective of the level of
exposure. Secondly, where the effective viral load and the volume of
emitted particles are both very high, most cases of infection will
again involve large numbers of viruses; this latter case is associated
with a high proportion of individuals present being infected. We
believe that each of these two cases represents rare circumstances. In
the former case, the effective viral load needed is greatly in excess of
a published estimate of the number of plaque-forming units of SARS-
CoV-2 at peak infection. In the second case, the very large number of
infections generated by transmission is so high as to imply either that
these circumstances are very unusual or that the virus has an extre-
mely high value of R, and, therefore, of R,.

The results of our model are consistent with previous studies of
transmission bottlenecks that have used viral genome sequence data.
For example, a study of influenza virus transmission suggested that
between 28 and 31 (73-82%) of a set of 38 transmission events were
likely to have been founded by a single virus™*°: Under default para-
meters, our model produced similar results.

Our approach is distinct from previous work in that, not relying
upon genomic data describing any particular virus or circumstance,
our result is a general one. In this sense, our work is predictive: If there
were to be an outbreak of a novel virus spreading by airborne trans-
mission, our model suggests that the transmission of that virus would
be characterised by tight transmission bottlenecks.
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environments contained multiple uninfected people, increases in the volume of
particles emitted led to substantial increases in the number of people infected.
However, at all but the highest viral loads, most transmission bottlenecks still
involved few viral particles.

While our model of particle spread captures the basic features of
respiratory virus transmission, it still makes multiple simplifications.
For example, our model neglects effects arising from convection cur-
rents caused by individuals in a room*. Effects such as these have the
potential to generate non-monotonic levels of exposure with distance
from an infected person, as particles are carried up and across the
ceiling before falling to a height at which they can be breathed in. Our
model also neglects the effects of local humidity on particle spread®,
as well as any detailed description of ventilation, such as the placement
of windows, ceiling vents, and air conditioning units. Such effects are
likely to have a distorting effect on the patterns of exposure we
identify, potentially enhancing disparities in exposure. The potential
effects of a highly skewed exposure distribution are represented by
our simulated bus environment where the long and thin shape of the
bus leads to extreme disparities in exposure (Supplementary Fig. 2).
These disparities place an effective ceiling on Ren, (Fig. 5, Supple-
mentary Fig. 5), with some people out of reach of emitted particles.

The transmission bottlenecks we inferred for the bus were not sub-
stantially distinct from those of other environments.

The simplifications involved in our model limit direct comparison
with real-world scenarios. A recent publication suggested an infection
risk of slightly under 10% for individuals in the most risky scenarios
after 8 h of exposure®, which compares to 18.7% or 74.9% in our
default lounge models of coughing and continuous speech: As dis-
cussed in Supplementary Methods 1, our default parameters likely
overestimate the effective viral load in a realistic situation. We note
that a complete accounting for transmission would require an account
of the precise distributions of emissions, viral load, and time-
dependent proximity between individuals, alongside environmental
parameters and a detailed description of human behaviour.

One area of uncertainty relevant to our model is the relationship
between the raw numbers of viral particles contained in emitted
material, the number of plaque-forming units (PFU) this represents,
and the true effective viral load. The raw number of viruses in emitted
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material, known as the viral load, follows a pattern of growth and then
decay during the course of infection, which in SARS-CoV-2 infection
reach a peak potentially of 10 viruses per mI**. In our default model,
we have used parameters from one study describing SARS-CoV-2
infection, which suggest a 3000-fold ratio between the raw number of
viruses and the number of PFUs*, further assuming a 1:1 ratio between
PFUs and the effective viral load. We note considerable variation in the
literature on this ratio. Experimental work has suggested a strain-
dependent ratio between SARS-CoV-2 viral load and focus-forming
units, a measure in some ways similar to PFU, of between 10*1 and
10%1*, while a challenge study of SARS-CoV-2 infection estimated close
to a 10%1 ratio*®. The relationship between PFU and the TCIDs, the
dose needed to initiate infection in 50% of individuals, is a topic of
some controversy, with a review of the subject identifying estimates
spanning several orders of magnitude, from 1.26 to 7 x10%% PFUY.
Modelling studies have attempted to estimate directly the ratio
between raw and effective viral loads, with a study of super spreading
events concluding on the basis of a Wells-Riley model suggesting a
ratio of between 2000:1 and 300:1*%. If we assume that the ability to
form plaques under favourable experimental conditions is a necessary
condition for a virus to cause infection in a host, and we allow for
flexibility given the assumptions underlying modelling studies, our
3000:1 ratio is likely at the conservative end of the spectrum. Studies
of viral load in other respiratory viruses show similar values to SARS-
CoV-2. Data from infections with parainfluenza and respiratory syn-
cytial virus show peak PFU levels around 104/ml***°, Studies of influ-
enza show mixed results, with peak PFU values often between 10* and
10%/ml but with occasional cases potentially reaching 10° PFU/mI*'. An
interesting case is that of measles infection: The very high reported Ro
for this virus®* makes this a potential case where transmission bottle-
necks in unvaccinated individuals may be higher.

Uncertainty in the literature also exists around the precise dis-
tributions of particle sizes emitted via coughing, speaking and sneez-
ing. While our method exploits experimental results, studies of these
processes have historically used different methods and are not in
perfect agreement. While we would not be confident about building a
combined model of particle emission, combining, for example,
speaking and sneezing, the finding that our basic result holds across
such distinct models supports the robustness of our conclusions.

A final simplification in our model is the neglect of interactions
between viruses, which could increase or decrease bottleneck sizes.
Some interactions, such as those characterised by superinfection
exclusion, are likely to reduce the number of cases of large transmis-
sion bottlenecks. In many cases of acute respiratory infection, a virus-
founding infection leads to the rapid growth of viral particles®, such
that after a given amount of time, any subsequent infection will involve
the addition of a tiny fraction of the current within-host population.
This, alongside the triggering of innate host immune responses®* and
other cellular interactions®, limits the window of time available for new
viruses to infect a host. Other interactions between viruses involving
cooperation have the potential to increase the proportion of bottle-
necks involving multiple virions®. Where single virions contain
incomplete functional genomes, more than one may be required for a
cell to produce a complete genome™*%, A consideration of viruses with
incomplete genomes would require a more nuanced definition of what
is meant by a transmission bottleneck.

Despite its limitations, the generalisability of our model and the
reproducibility of our result across a broad range of scenarios provide
what we believe is a compelling explanation for past observations of
tight transmission bottlenecks in respiratory virus transmission.
Where the number of cases of infection in a scenario is limited, as
represented by a moderate value of R.,,,, most people exposed to an
infected person are not themselves infected, incurring an effective
transmission bottleneck of zero. Where infectious particles spread
through the air via diffusion, it is difficult to generate patterns of

exposure that combine cases of non-infection with cases of infection
that exclusively involve large bottlenecks. The mechanism of airborne
respiratory virus transmission leads to tight transmission bottlenecks.

Methods

Wells-Riley model

The Wells-Riley model adopts a Poisson assumption about infection.
Suppose that a person receives a level of exposure E, by which we mean
that the expected number of viruses causing an infection is equal to E.
Then the probability of an individual being infected is given by

P(infection)=1—e £ o))

While the derivation of E can be complex, involving multiple
individual and environmental factors, we here simply considered a
range of possible values for this statistic.

We denote the population bottleneck at transmission by N. Given
a Poisson model, the proportion of cases of infection initiated by a
single viral particle is given by

—E
P(N=1)= lf_e? )

Similarly, the proportion of cases of infection initiated by ten or
fewer viral particles is

10 Eke’f 3
P(N<10)= =4 L K 3
( ) 1—e*
These formulas were used to estimate transmission bottlenecks
under different levels of exposure.

Transmission mediated by the airborne spread of infectious
particles

In order to estimate how exposures to a virus might vary in a given
environment, we built a model of the airborne spread of viruses within
a room. Considering the first instance SARS-CoV-2 infection, we
modelled the behaviour of particles emitted by an infected individual
with a cough, measuring the subsequent exposure of others in
the room.

Considering a single coughing event, we estimated for each
environment the exposure E(x,r), describing the volume of emitted
infectious material comprised of emitted particles of radius r to which
an uninfected person at position x = {x,y} would be exposed over a
period of time. This expression was calculated by a process of sum-
mation: We generated an expression for the time-dependent exposure
Ec(x,r,t), occurring t seconds after a single cough, and then summed
over time and coughing events.

Diffusion model

To calculate Ec(x,r,t), we estimated the concentration of infectious
material contained in particles of radius r um at x ={x,J} and time ¢
following a single emission event. This concentration is altered by the
emission of infectious particles into the environment, the spread of
particles through space, the loss of particles via evacuation and sedi-
mentation, and the inactivation of viruses contained within particles.
We write

Inactivation

Particle emission Evacuation
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We consider the parts of this equation in turn.
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Emission of infectious particles

Coughing leads to the emission of a distribution of particle sizes: This
distribution has been studied via a range of experimental means*-’.,
Following this literature, we modelled particles emitted from a cough
as following a lognormal distribution®’. We simulated particles with
radii r € {1, 2, ..., 500} um, with particles being emitted in quantities
proportional to the function

f(n=Q@rus)— Q2r —1),u,s) S

where Q is the cumulative distribution function of the lognormal dis-
tribution

Qd,u,s)= % {1 +erf (lnif; u)} (6)

with the parameters u=2.60269 and s=0.693147°°, We assumed
that the infected person coughed 10 times per hour at regular
intervals®',

The velocity of particles following a cough falls rapidly, within a
fraction of a second®’. We, therefore, described a cough as instanta-
neously creating a cloud of particles at mean radial distance of 20 cm
from the infected person (standard deviation 5 cm) and with a spread
angle 45%°. By default, the volume of liquid emitted from a cough was
set to equal 38 pl°*. Altering the initial mean radial distance of the cloud
of particles had only a small impact on exposure levels (Supplemen-
tary Fig. S6).

We also investigated models of particle emission by coughing and
sneezing. Descriptions of these models, and further details of the
emission model, are provided in Supplementary Information.

Evaporation

Emitted particles evaporate over time, the removal of liquid leaving
behind a smaller solid particle with a radius of approximately one-
quarter of that which was emitted® *. This process occurs relatively
quickly, with, for example, a droplet of size 20 um evaporating in
under a second®” and a droplet of size 55um evaporating within an
estimated 14.5s%. Given the overall timescale of our model, we
assumed that the process of evaporation is short, such that a particle of
radius ro was, upon emission, instantaneously reduced to the new size
r=ro/4. In the following description, we refer to particles according to
their radius at the time of emission.

Turbulent diffusion
Once emitted, particles spread through the air via diffusion. Both
Brownian motion and air turbulence potentially contribute to this,
though at the size of particles we consider, it is likely that turbulent
diffusion will dominate over Brownian motion®’; our model therefore
neglected the effects of Brownian motion.

The extent of turbulent diffusion depends upon how well a room
is ventilated, with more frequent replacement of the air in a room, or a
larger room, each requiring a higher mean rate of particle movement.
We adopted a model based on the experimental measurement of air in
a domestic environment’. This approach defined a characteristic
length scale for a room by

L=YXYZ=V 7)

where Vis the volume of the room in m*. Our model then links K, the
turbulent diffusion coefficient, to L, and y, the number of changes of
the air in a room per hour:

Within our model, this becomes

K(L,y)=(0.52y+0.31)L2 9)

Evacuation

We interpret the air change rate y using the cutoff radius theory pre-
sented by Bazant et al.°. Under this model, the evacuation rate is the same
as the air replacement rate for droplets below a cutoff radius given by

r= yLu,
¢ 2gAp

where p1, is the dynamic viscosity of air, g is the acceleration due to
gravity, and Ap is the difference in densities between water and air.
Above the cutoff radius, the evacuation rate scales with 1/, with
heavier particles being less subject to air movement. Where

10)

r.= max{rr.} 1)

we have

r 2
B(r,c)= — y(—c) c (12)

I

Sedimentation

Emitted particles will be affected by gravity, with heavier particles
falling to the floor more quickly than lighter particles, according to
Stokes’ Law. In our model we approximated this process by the simple
removal of particles from the air over time. We followed a previous
approach, which balanced diffusion and gravitational terms to
approximate the time taken for a particle to fall to the ground®®. We
have

z
tea=9"3 13)

where z, is the initial height of the particle, r is the particle radius, and
¢ is calculated as 0.85x10®ms. From this, we derived the sedi-
mentation term

S(r,c)= %
Sex

14)

The initial height of particles zo was defined according to whether
individuals in an environment were standing or seated. We made the
assumption that the floor absorbs particles, with no rebound being
possible.

Virus inactivation

Viruses within emitted particles are intrinsically unstable, such that the

number of infectious particles in each droplet decays over time. An

experimental study has suggested a half-life for SARS-CoV-2 of around

1.1h*. The viral titre in each droplet is therefore given by
N(t)=Nye ™ 15)

where N, is the initial number of particles in the droplet and A is the

decay constant. To model a half-life of 1.1 h, we set 1=0.6301h"". We
then have

f—z =0.52y+0.31h" 8) D)= ~Ac (16)
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Solution of the diffusion equation

By default, we made the assumption that, upon hitting a wall, particles
are absorbed, either impacting upon the wall due to electrostatic or
inertial forces” or being caught in downward convection currents
leading to their deposition on the floor*. By means of a sensitivity
analysis, we also considered the case in which walls perfectly reflected
particles. Under each of these conditions, the solution of Eq. (4) can be
expressed analytically. Notes on the solution of the diffusion equation
are provided in Supplementary Information.

Calculating individual exposures
We generated values c(x,r,t) at time intervals of one second for a
period of one hour following each emission event. The initial values
c(x,r,0) were scaled so that the total volume, summed across particle
sizes, was equal to the desired volume of the emission. In order to
calculate the total exposure of person i at the location x; = {x;, y}, we
generated values c(x,r,t) at positions in the square grid centred on x;,
with dimension 40 cm, and containing points at resolution 2cm,
finding the mean value of c in this grid. The volume of the space
represented by this box is 0.16Z, where Z is the height of the room so
that we can calculate the density of viral particles of radius r in the box.
Given a parameter A, describing the rate of air inhalation by a person,
we calculated the expected number of particles of radius r inhaled
within a 1second interval at time ¢. Summing these values over times ¢,
we obtained an expected number of particles of radius r inhaled in a
1 hour period following a single emission event. Summing these values
over multiple emission events, we obtained an expected number of
particles of radius r inhaled over the entire model period. We denote
this number as P; (r).

For each uninfected individual in our model, we generated a
Poisson random variable

n; . = Poisson (Py(r)) a7)

describing the number of particles of radius r inhaled by that per-
son. This number was converted into a number of effective viruses: For
each such particle, the expected number of effective viruses is given by

Ve (kp.r) = G) kpmr® 18)

where k, is the effective viral load of particles at the point of emission.

To calculate the effective number of viruses inhaled via particles of

radius r, we calculated a second Poisson random variable

v, =Poisson(n; .V, (k,.r)) (19)

The transmission bottleneck related to the person i was finally
calculated as the sum of these values:

Ni=> v,
r

(20)

Table 1| Parameters defining each of the environments
explored in our model

Environment X(m) Y(m) Z(m) T(h) y(h™") n. A(L/min) 2z, (m)
Office 10 3 10 8 37 8 107 1.1
Nightclub 10 6 15 4 2502 162 407 1.6
Bus 2.4 2.4 12 1 107 50 125" 11
Livingroom 5.5 2.7 3.7 8 1 1 6’ 1.1

Parameters describe the dimensions of the rooms X, Y, and Z, the time spent in the given
environment, T, the number of air changes per hour, y, the number of uninfected people in the
environment, ne, the volume of air breathed in per minute by uninfected individuals, A, here
shown in units of litres, and the height at which particles were emitted, zo.

Person i was considered to have been infected if and only if N; > 0.
Statistics of bottlenecks were calculated across cases of infection.

For each scenario considered, we calculated 10° independent
simulations, generating N; for each individual in each simulation. Sta-
tistics were collated across simulations.

Calculation of ki,

By default the effective viral load was calculated using an epidemio-
logical model. Details are given in the Supplementary Information. A
broad range of values of ki, were considered.

Inhalation

Our model assumes that the process of being exposed does not
change the local level of exposure i.e. breathing in viruses does not
significantly remove viruses from the air. We explore this assumption
further in Supplementary Information.

Environments
We modelled transmission within different environments, including an
office, a bus, a nightclub, and a lounge. For each environment, our
model was parameterised with the dimensions of the room in metres,
X, Y, and Z, the number of uninfected people present, n,, and their
locations, the air replacement rate y, the length of time for which we
assumed people were in the environment 7, the volume of air breathed
in per minute by an individual, A, and the height at which particles were
emitted, zo. Parameters for each environment are shown in Table 1.
In Supplementary Information, we provide further notes on
environmental parameters and a description of methods used to
model variation in infectivity levels.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data underlying the figures shown in this manuscript are available in
the repository https://github.com/cjri/DiffusionCodeData/.

Code availability

Code was used to generate data simulating and analysing levels of
exposure in different environments. The code is available at https://
github.com/cjri/DiffusionCode’.
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