
Science of the Total Environment 951 (2024) 175724

Available online 22 August 2024
0048-9697/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Effect of SARS-CoV-2 shedding rate distribution of individuals during their 
disease days on the estimation of the number of infected people. 
Application of wastewater-based epidemiology to the city of 
Thessaloniki, Greece

M. Kostoglou a, M. Petala b, Th. Karapantsios a,*, Ch. Dovas c, V. Tsiridis b, E. Roilides d,  
A. Koutsolioutsou-Benaki e, D. Paraskevis e,f, S. Metalidis g, E. Stylianidis h, A. Papa i,  
A. Papadopoulos j, S. Tsiodras f, N. Papaioannou c

a Laboratory of Chemical and Environmental Technology, Dept. of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
b Laboratory of Environmental Engineering & Planning, Department. of Civil Engineering, Aristotle University of Thessaloniki, Thessaloniki 54 124, Greece
c Faculty of Veterinary Medicine, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
d Infectious Diseases Unit and 3rd Department of Pediatrics, Aristotle University School of Health Sciences, Hippokration Hospital, Thessaloniki 54642, Greece
e Department of Environmental Health, Directory of Epidemiology and Prevention of Non Communicable Diseases and Injuries, National Public Health Organization, 
Athens, Greece
f National and Kapodistrian University of Athens, Athens, Greece
g Department of Haematology, First Department of Internal Medicine, Faculty of Medicine, AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki 
54636, Greece
h School of Spatial Planning and Development, Faculty of Engineering, Aristotle University of Thessaloniki, 54124, Greece
i Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
j EYATH S.A., Thessaloniki Water Supply and Sewerage Company S.A., Thessaloniki 54636, Greece

H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Leveraging SARS CoV-2 load in WW to 
evaluate Omicron variant spread in 
Thessaloniki.

• Impact of virus shedding rate distribu
tion patterns in human stool to WBE 
models.

• Day of maximum shedding rate with 
respect to the initial infection day is 
critical.

• WBE data coupled with disease trans
mission data improve epidemiological 
models.

A R T I C L E  I N F O

Editor: Lidia Minguez Alarcon

A B S T R A C T

During the COVID-19 pandemic, wastewater-based epidemiology has proved to be an important tool for 
monitoring the spread of a disease in a population. Indeed, wastewater surveillance was successfully used as a 
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complementary approach to support public health monitoring schemes and decision-making policies. An 
essential feature for the estimation of a disease transmission using wastewater data is the distribution of viral 
shedding rate of individuals in their personal human wastes as a function of the days of their infection. Several 
candidate shapes for this function have been proposed in literature for SARS-CoV-2. The purpose of the present 
work is to explore the proposed function shapes and examine their significance on analyzing wastewater SARS- 
CoV-2 shedding rate data. For this purpose, a simple model is employed applying to medical surveillance and 
wastewater data of the city of Thessaloniki during a period of Omicron variant domination in 2022. The dis
tribution shapes are normalized with respect to the total virus shedding and then their basic features are 
investigated. Detailed analysis reveals that the main parameter determining the results of the model is the dif
ference between the day of maximum shedding rate and the day of infection reporting. Since the latter is not part 
of the distribution shape, the major feature of the distribution affecting the estimation of the number of infected 
people is the day of maximum shedding rate with respect to the initial infection day. On the contrary, the 
duration of shedding (total number of disease days) as well as the exact shape of the distribution are by far less 
important. The incorporation of such wastewater surveillance models in conventional epidemiological models - 
based on recorded disease transmission data- may improve predictions for disease spread during outbreaks.

1. Introduction

The recent outbreak of the COVID-19 epidemic brought in the fore
ground the subject of wastewater based epidemiology (Hegazy et al., 
2022; Schill et al., 2023; Wade et al., 2022). The accurate quantification 
of the concentration of virus fragments in wastewater proved a useful 
tool, cheap and efficient, to measure the spread of the disease, com
plementary to conventional reporting of the medically tested infected 
individuals. The basic idea is that wastewater content of virus fragments 
mirrors the state of the whole population, symptomatic and asymp
tomatic infected people. This is an advantage compared to conventional 
medical surveillance, through rapid tests or PCR screening, of in
dividuals since the latter capture only people who seek medical advice 
either because they have clinical symptoms or at least have serious 
suspicion of being infected. Typically, medical and wastewater data are 
analyzed and compared in scientific literature of wastewater based 
epidemiology. Apart from identifying persistent correlations between 
these two types of data, a yet more ambitious goal is to interrogate them 
in order to estimate the total number of infected people and, from that, 
even appraise the number of unreported infected individuals (those not 
registered by medical surveillance either because of having no or mild 
symptoms or lacking access to medical services). Success in such anal
ysis can endorse the predictive power of wastewater data for the spread 
and evolution of a disease. Several types of mathematical models have 
been used in this context. A comprehensive review of the recent 
modeling works in wastewater based epidemiology can be found in 
(Ciannella et al., 2023). The interest here focuses on phenomenological 
models. The key in such models is the equation that relates the rate of 
shedding virus parts to wastewaters with the convolution integral of the 
number of infected people with age of infection τ (e.g., expressed in 
days) and the function S of individual shedding rate distributed on τ.

Let us examine some phenomenological models describing viral parts 
shedding to wastewater. In the study of Proverbio et al. (Proverbio et al., 
2022) a typical SEIR epidemiological model is augmented by a 
compartment A accounting for the viral dynamics in a population. The 
model has been extended to include stochastic terms. The concentration 
of virus parts in wastewaters is assumed proportional to the value of A. 
The cumulative viral load in wastewater is estimated in the study of 
Phan et al. (Phan et al., 2023) by employing a simple SEI model and 
integrating in time the variable I multiplied by a set of constant co
efficients. An innovative SINIDR model has been developed in the study 
of Mattei et al. (Mattei et al., 2023) accounting separately for the 
number of detected ID and not detected IN infected individuals. The viral 
load in wastewater results through the typical convolution equation 
discussed above. The above models have been used to fit actual data. A 
more sophisticated approach to calculate wastewater virus shedding is 
part of the new age of infection models such as the model developed by 
Kostoglou et al. (Kostoglou et al., 2022). These models have a high de
gree of complexity requiring management of big data of individuals' 

responses captured by distinct property distributions. Although the 
complexity restricts at present their applicability, these models repre
sent a very promising tool to engage personalized responses to waste
water based epidemiology for public health decision making. In brief, 
each individual conveys a vector of properties related to the disease by 
the function S among others. In this case, the convolution integral can be 
expanded to include all the components of the characteristic vector. 
There are some cases in which the total number of infected people is 
known, that is, only reported infections exist (e.g., in a hospital or in a 
jail). In these cases, the data can be employed to estimate directly the 
function S (Cavany et al., 2022; Hoffmann and Alsing, 2021).

Typically, the function S is prescribed based on literature informa
tion and on observations, and parameters of multiplicative nature are 
determined by fitting the model to the data. These parameters contain 
also information on the decay of virus load in wastewater caused by 
physicochemical and biological parameters of wastewater (Proverbio 
et al., 2022). A systematic approach to account for this decay has been 
developed in literature (Kostoglou et al., 2021; Petala et al., 2021). The 
shortcoming of the proposed approach is that the corrected values of 
virus shedding are normalized by an unknown reference value. This 
problem has been overcome by an approach developed by (Petala et al., 
2022) to find the number of unreported infected people in a population 
using directly the wastewater data, i.e., bypassing the use of a 
phenomenological model for the spread of the disease.

In this work, the method is slightly modified, and is applied to new 
data obtained at the city of Thessaloniki (Greece) -about 1,000,000 in
habitants, acquired in a period of 2022 where the omicron variant of 
SARS-CoV-2 was dominant in the city. It must be stressed that it is 
important to perform the analysis for a period of a single dominant 
variant of the virus since in other cases more than one forms of S(t) 
distributions must simultaneously be considered. In this context, a 
parametric analysis is performed focusing on the significance of the 
shape of function S(t) considering several shapes proposed in the rele
vant literature.

The structure of the present work is the following: At the next sec
tion, the proposed procedure of combining medical surveillance data 
with wastewater data to extract the ratio of unreported to reported 
infected people is described. Then, several shapes of distributions pro
posed in literature for S(τ) are reviewed and properly normalized. 
Finally, sensitivity of the analysis procedure with respect to the pa
rameters of the distributions for a set of data from Thessaloniki during 
2022 is presented and discussed.

2. Proposed procedure

An approach was proposed by (Petala et al., 2022) for cross- 
examining and exploiting medically reported infections data and 
wastewater virus concentration data in order to infer the evolution of 
the ratio of unreported to reported patients for a specific period of time. 

M. Kostoglou et al.                                                                                                                                                                                                                             



Science of the Total Environment 951 (2024) 175724

3

The continuous form of the governing equations in case of disease 
detection at time td (number of days after the infection day) and disease 
duration at time te (days) is: 

F(t) =
∫t+td

t+td − te

f(x)dx (1) 

g(τ, t) = f(t + td − τ)U(te − τ)
F(t)

(2) 

R(t) = F(t)
∫te

0

g(τ, t)S(τ)dτ (3) 

where f(t) is the number of infections reported at time t, F(t) is the 
number of infected people at time t, g(τ,t) is the normalized distribution 
of infected people over time from the day of infection τ and R(t) is the 
normalized (see below)shedding rate of virus to the wastewater. The 
function U is the step function being unity for positive and zero for 
negative argument. The function S(τ) includes the dependence of viral 
shedding rate of an individual on the time since infection τ. The ratio of 
the virus shedding rates R(t) calculated from the number of reported 
infected people over the wastewater measured shedding rates Rexp(t) 
allows estimation of the ratio of the reported infected people over the 
total (reported and unreported) infected people. The experimental data 
Rexp(t) are normalized with respect to their values in a specific period in 
time and S(τ) is given in arbitrary units. Considering that the period 
chosen for normalization is a “quiet” period of low disease prevalence 
and as such there are approximately only reported infections, the ratio 
Rexp(t)/R(t) normalized with its values in the reference period gives the 
ratio of total to reported patients (Petala et al., 2022). Since the refer
ence period in that work referred to the existence of a different than 
omicron variant of the virus, a different procedure is followed here. At 
first, the ratio of normalized Rexp(t) based on wastewater analysis to 
normalized R(t) based on detected infections is computed. Then the 
assumption is made that at the minimum value of this ratio there are no 
unreported infections. In this way, the evolution of the total to reported 
individuals been infected, is estimated. The uncertainty imported by this 
assumption can be straightforwardly assessed. If the ratio of total to 
reported cases at the time of minimum is a value larger than unity, this 
value must simply multiply the evolution in time of this ratio. The 
method used here is actually a simplification (regarding normalization 
of the results) of the method described in detail in Petala et al. (2022). 
The main difference is that several shapes of the distribution function S 
(τ) for the shedding rate are tested.

3. Proposed shapes for S(t)

3.1. General shapes

In what follows, the time (or age of infection) in functions with one 
parameter is denoted as t whereas in functions with two parameters t is 
the actual time and τ is the age of infection. Only in the Eqs. (2) and (3)
the symbol τ is used for the age of infection. Several proposed in liter
ature shapes of the function S(t) are presented here. The time t is shifted 
such as to take the value 0 at the time of onset of virus shedding at 
wastewater. An important aspect of the function S is the duration of 
virus shedding. There are three types of function S behavior with respect 
to duration time te. Type I behavior: The definition of te is necessary 
because the form of S is such that its integral up to infinity does not 
converge. Type II behavior: The definition of te is optional. In that case S 
(t) tends to zero as t increases in a way that allows integration of S(t) 
over time. Type III behavior: The value td is hardwired in the expression 
of S(t). Let us see one by one the available shapes of function S employed 
in literature.

Shape (a): This is a simple rational function having the form S(t) =
Ct

b+t2 (Proverbio et al., 2022). It follows type I behavior regarding te which 
means that the value of te must be defined together with the parameters 
C and b.

Shape (b): This is the shape of the well-known Gamma distribution 
S(t) = Ctαe− bt (Kostoglou et al., 2022). It follows type II behavior with 
respect to duration time which means that the definition of a value for te 
is optional. The parameters of the function are C, α, b and optionally te.

Shape (c): This shape is called double exponential. and it is given as 
S(t) = C(1 − e− αt)e− bt (Miura et al., 2021). It follows type II behavior 
with respect to duration time. The parameters of the function are C, α, b 
and optionally te. It is noticed that this model is the only one of 
phenomenological nature based on a system of differential equations for 
the shedding rate. A detailed biological description can be found in 
(Teunis et al., 2015).

Shape (d): This shape consists also of two exponential functions 
(Petala et al., 2022). However, unlike shape (c) the two exponentials are 
defined in different domains of the independent variable t. The form of 
this distribution is. 

S(t) = Ce− α(tm − t) 0 ≤ t ≤ tm 

S(t) = Ce− b(t− tm) tm ≤ t ≤ te 

The parameter tm denotes the time of occurrence of the maximum 
value of the distribution. This shape belongs to type II with respect to 
duration time. Its definition is optional which means a value of infinity te 
can be set in the above equation. The parameters of this shape are C, α, b, 
tm and optionally te.

Shape (e): This is the standard Beta distribution (Wu et al., 2022). It 

has the form S(t) = C
(

t
te

)α(

1 − t
te

)b
. It belongs to the type III behavior 

regarding duration time. It is clear that the duration type is part of the 
equation for the function S(t) and the parameter te must necessarily take 
a finite value. The parameters of this shape are C, α, b, te.

3.2. Normalization of S(t)

It is important to bring all the above proposed shapes of the function 
S(t) in a form which allows comparison to each other. The parameter C 
in all cases multiplies the shape, implying that it denotes in some way 
the intensity of the viral shedding process. However, this parameter has 
different quantitative meaning for each shape (even its units differs 
among shapes). To have a basis of comparison between shapes it is 
fruitful to renormalize the functions to bring them to the form S(t) = Ns 
(t) where N is the total amount of virus parts shed by an individual and s 
(t) has units of inverse time (i.e. days− 1). In practice the distribution s(t) 
can be computed by the following processing of S(t): 

s(t) =
S(t)

∫te

0

S(τ)dτ

(4) 

After some algebra, the following relations can be found for the 
function s(t):

Shape (a): 

s(t) =
2t

b + t2
1

ln
(

b+t2d
b

) (5) 

The parameters are b and te. The function s(t) appears in Fig. 1a for 
four combinations of b and te. In particular, these combinations are te =

10, b = 1; te = 10, b = 5; te = 20, b = 1; te = 20, b = 5. The effect of te is 
obvious in the figure. The effect of b is to make the distribution broader 
as b increases. The sharp cut off imposed by te can be clearly observed. 
The integral in the denominator of Eq. (4) does not converge as te goes to 
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infinity as this is why the definition of te is necessary for this type of 
distribution.

Shape (b): 

s(t) =
bα+1tαe− bt

Γ(α + 1) − Γ(α + 1, td)
(6) 

where Γ(x) and Γ(x,y) are the Gamma and the incomplete Gamma 

functions, respectively, defined as Γ(x) =

∫∞

0

tx− 1e− tdt,Γ(x, y) =

∫∞

y

tx− 1e− tdt. The definition of te is optional. If a value for te is not 

defined, the incomplete Gamma function term goes to zero. The neces
sary parameters of the distribution are α and b. The function s(t) for four 
combinations of the parameters α = 1, b = 0.3; α = 2, b = 0.3; α = 1, b =
0.7; α = 2, b = 0.7 is shown in Fig. 1b. The effect of α and b cannot be 
isolated. It appears that the distribution becomes narrower as α de
creases or b increases. The curves shown refer to the absence of a value 
for te. Such a value can be introduced leading to the truncation of the 
corresponding curve (and to increased values imposed by renormaliza
tion required by the Eq. (4).

Shape (c): 

Fig. 1. Typical shapes of the function s(t) (normalized viral shedding vs time since infection) for several sets of their parameters. (i) shape (a), (ii) shape (b), (iii) 
shape (c), (iv) shape (d), (v) shape (e).
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s(t) = (1 − e− αt)e− bt
(

1 − e− αte

b
−

1 − e− (α+b)te

α + b

)− 1

(7) 

The definition of te is optional. If it is not defined, the corresponding 
exponential terms simply goes to zero at this value. The function s(t) for 
four combinations of parameters α, b (α = 0.2, b = 0.3; α = 1, b = 0.3; α 
= 0.2, b = 0.7; α = 1, b = 0.7) in the absence of te appears in Fig. 1c. The 
distribution becomes narrower as α or b increases.

Shape (d): In this case a completely different parametrization of the 
function will be introduced for convenience. Instead of α, b the new 
parameter ε is introduced. This parameter denotes the ratio of the viral 
shedding between the inception and end of the shedding period to the 
maximum value of shedding. The modified equation takes the form: 

s(t) = εe− ζt/tm (εtm + te − tm)(1 − e− ζ)

ζ
0 ≤ t ≤ tm (8a)  

s(t) = e− b(t− tm)/(td − tm)(εtm + te − tm)(1 − e− ζ)

ζ
tm ≤ t ≤ td (8b) 

where ζ = ln(1/ε).
In this form (unlike in the original form) the definition of the 

parameter te is necessary since it is used for the reparameterization. The 
new parameters are ε, tm, te. Typically, a small value is assigned to 
parameter ε (e.g. ε = 0.01 in (Petala et al., 2022)]. It can be assumed 
fixed since the distribution has a small sensitivity to ε for such small 
values of the parameter. The other parameters tm and te denote directly 
the position of the maximum values and the duration of viral shedding, 
respectively. Typical results for four combinations of the parameters tm 
and te appear in Fig. 1d. It is interesting that the position of the 
maximum is free to move along the period of shedding.

Shape (e): 

s(t) =
1
te
(t/te)α

(1 − t/te)b

B(α + 1, b + 1)
(9) 

where B(x, y) =
∫1

0

tx− 1(1 − t)y− 1dt is the so called Beta function. In this 

case, the time te is hardwired in the equation and cannot be ignored. The 
function s(t) for te = 10 and four combinations of parameters α, b (α =
0.5, b = 1; α = 5,b = 1; α = 5, b = 1; α = 5, b = 5) is shown in Fig. 1e. As α 
and b increase the distribution becomes narrower. The position of the 
maximum value depends on the relative value of α with respect to b. This 
position can be freely move along the period of shedding.

3.3. Comparison between proposed distributions

It appears that the shape (a) has a sharp cutoff, and shapes (b), (c) 
have the location of maximum always at the first half period of shed
ding. The maximum location can be at any place along the shedding 
period for the shapes (d) and (e). The question is on what basis the 
comparison between distributions has to be made. Of course, it cannot 
be made through the direct parameter choice since parameters act in a 
different way for each shape. The requirement here is to construct an 
hierarchy of the features of the distribution. The most important features 
are (i) the total shed viral quantity N (ii) the duration of the viral 
shedding and (iii) the time of maximum shedding. The shape compari
son of the distributions is meaningful for distributions having the same 
major features (i), (ii) and (iii). In order to compute the parameters of 
the distributions having the same features, analytical relations for the 
maximum location in terms of parameters are derived. The time of 
maximum shedding rate is given as: shape (a) tm = b0.5; shape(b) tm =

α/b; shape (c) tm = ln(1 + α/b)ˑ1/α; shape (d) tm is a direct parameter; 
shape (e) tm = α/(b-α). The shape (d) distribution with the parameters 
tm = 6, te = 32 employed in the data analysis of (Petala et al., 2022) is 
considered here. Then the parameters of the other shapes of the 

distributions are chosen in order to match the values for tm = 6 and te =

32 of shape (d). The resulting distributions are shown in the two Fig. 2a 
and b for clarity of presentation. The sharp cut off of shape (a) is obvious. 
According to Fig. 2b, the shapes (b), (c) and (d) are rather similar to each 
other with shape (e) having somewhat broader distribution whereas 
shapes (b) and (c) are almost identical. According to Fig. 2a, the shape 
(d) appears to be different than the shape (c), having a narrower form. 
Summarizing, the function S(t) is characterized hierarchically by the 
total viral shedding amount, the shedding duration and the time from 
shedding inception to maximum shedding. The exact shape of the dis
tribution can be assumed as a fourth feature. A preliminary analysis 
showed that the shapes (a), (b), (c), (e) of the distribution are similar to 
each other and only the shape (b) is kept as a representative one to 
analyze their differences to the shape (d).

3.4. Discretization

Up to this point, we worked with continuous shapes of the distri
bution S(t). The corresponding equation is typically discretized on a 
daily basis. This implies that a detailed finite volume representation of 
the problem includes an integration over the period of a day. However, 
this is not the way of practical implementation. In practice a single value 
of S(t) at the end of a day is assumed to express the daily shedding rate. 
The two approaches are not equivalent. In Fig. 3 the resulting daily 
shedding rate based on continuous and discrete approaches are pre
sented. As expected, (due to the smoothing effect of daily integration) 
the discrete approach leads to narrower distributions. Even the location 
of the maximum differs by one day between discrete and continuous 
approaches. So, it is necessary to define together with the shape of the 
distribution S(t) the way of its handling i.e. discrete or continuous.

4. Results and sensitivity analysis

The shape (d) of the function S(t) is considered as base case. The 
system of Eqs. (1)–(3) is discretized using single day intervals and the 
discrete version of S(t) is employed. It is noticed that in the discrete 
version the reporting happens at day td + 1. The procedure is applied to 
medical surveillance (https://eody.gov.gr) and wastewater data for the 
city of Thessaloniki between February 1st and December 15th, 2022, 
Fig. 4. Imported cases refer to daily cases reported by the National 
Health Organization (NHO), while the relative shedding rate is the 
normalized and rationalized SARS CoV-2 concentration (Petala et al., 
2021) that was also announced daily. During that period everyday 
sampling, analysis and reporting to NHO and the public was imple
mented to allow for integrated COVID-19 transmission estimations. 
Samples are acquired every day from the entrance of the Wastewater 
Treatment Plant of the city. Normalization of viral load measurements 
with respect to wastewater flow rate and city population as well as 
rationalization with respect to specific physicochemical parameters of 
wastewater, e.g. suspended solids, organic load, dissolved oxygen etc. 
was performed according to a standard procedure explained before 
(Petala et al., 2021). Although normalization of viral load with respect 
to flow rate and population harmonizes adequately wastewater and 
medical data, it is notable that rationalization with respect to waste
water physicochemical enhances further the agreement between 
wastewater and medical data in Fig. 4. A detailed discussion on the latter 
is beyond the scope of the present work and is the subject of another 
publication which is underway. For the examined period, the analysis of 
clinical and wastewater data indicates a clear domination of the Omi
cron variant in the infected population (Chassalevris et al., 2022). This is 
a prerequisite for applying below a single S(t) shedding rate distribution. 
Furthermore, the first and last ten days of the examined period are not 
employed to avoid edge effects. The non-smoothed infections raw data 
are used in the model. Nevertheless, the computed ratio P of total (re
ported and unreported) to reported infected people is smoothed using a 
7-days smoothing to account for the weekly periodicity of reported 
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infections (i.e. always lower during weekends due to limitations in 
clinical reporting, less medical tests, etc).

Based on literature work (e.g. (Puhach et al., 2023; Takahashi et al., 
2022)) for the Omicron variant of the SARS-CoV-2 virus, the charac
teristic parameters values used in the model shape (d) are te = 14, tm = 4. 
As a base case, the detection of infection is assumed to occur at the sixth 
day from the inception of viral shedding (i.e. td = 5). This is somewhat 
faster from what was considered in the previous period of COVID-19 
(Petala et al., 2022) but it is justified by the higher awareness of the 
public about the infectiousness of the Omicron variant of the virus.

Below, the evolution of the ratio of the total infected (reported and 
unreported) people to reported infected people P during the period of 
study is presented and a sensitivity analysis with respect to the param
eter values chosen follows. It is noticed that all the parameters are 
related to the function S(t) except td, the day of detection of the infec
tion. The minimum value of P is not unity (as it should be due to the 
assumption of no unreported individuals at the minimum value of P) 
because of the smoothing procedure. The scenario te = 14, tm = 4, td = 5 
is the basic case. At first, the sensitivity with respect to tm, the day of the 
maximum shedding rate in the distribution counted from the day of 

infection, is studied. Fig. 5a presents the base case together with its 
modifications using tm = 3 and tm = 5. The average value of P goes from 
2.38 to 2.66 as tm goes from 3 to 5. The effect of tm is not uniform during 
the period of consideration. The next parameter studied is the one 
related to the day of detection (i.e. td). The base case and its modifica
tions for td = 4 and td = 6 appear in Fig. 5b. The average value of P goes 
from 2.39 to 2.68 as td goes from 6 to 4. It appears that the effect on P of 
increasing tm is similar to the effect of decreasing td. This behavior 
supports the hypothesis that the difference between td and tm is the main 
parameter affecting the evolution of P. The hypothesis is verified by 
comparing the base case (td-tm = 1) with the one having tm = 5, td = 6 
(again td-tm = 1). This comparison appears in Fig. 6. The deviation be
tween the two distributions is very small verifying the argument that the 
P evolution is primary determined by the difference between the time of 
the maximum viral shedding to the time of infection detection. The next 
examined parameter is the duration of the shedding. The base case and 
its modifications for te = 11 and te = 17 appear in Fig. 7. The average P 
value goes from 2.5 to 2.55 as te goes from 11 to 17. It might be claimed 
that the effect of te on P is quite limited. The last investigated parameter 
is the shape of the function S(t). As an alternative to shape (d), the shape 

Fig. 2. Comparison between s(t) (normalized viral shedding vs time since infection) of several shapes with equivalent sets of parameters (resulting by matching main 
features of the s(t)). The set of parameters is the one used in (Petala et al., 2022).

Fig. 3. Comparison between continuous and discrete distribution s(t) (normalized viral shedding vs time since infection) of shape (c). Same parameters as those used 
in Fig. 2.
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(b) as representative of the other shapes (as discussed in the previous 
section) is considered. The parameters of shape (b) are chosen to match 
the basic features of the base case shape (d) following the procedure 
explained in the previous section (resulting in α = 3, b = 0.75). The 
comparison of the base case to its modification using shape (b) distri
bution appears in Fig. 8. The average P values are 2.54 (base case) and 

2.45 (shape (b). One may argue that the effect of the shape of the dis
tribution is small. In summary, it is shown that the main factor affecting 
the P evolution is the difference td-tm. The absolute values of td and tm, 
the duration te and the detailed shape of the S(t) have a small effect on 
the determination of P. It is noted that the above analysis is based on the 
assumption that shedding starts from the day of infection. The 

Fig. 4. Medical surveillance and wastewater data Rexp for the examined period.

Fig. 5. Ratio of total (reported and unreported) to reported infected people P for shape (d) function s(t) (normalized viral shedding vs time since infection) with 
disease duration te = 14 d: (a) disease detection time td = 5 and examination of the effect of maximum shedding time tm and (b) maximum shedding time tm = 4 and 
examination of the effect of disease detection time td.
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possibility cannot be excluded that there may be a delay between 
infection and start of viral shedding. Such a generalization would not 
affect the results of the present work except that the definition of td 
should be different, i.e. the time of infection reporting after the inception 
of viral shedding. It is noted that there are no multiple sets of data to 
perform a statistical significance analysis. The only sensitivity analysis is 
performed with respect to the average value of P. It is clearly shown that 
this values is more sensitive to the parameter td-tm (i.e. to the difference 
and not to the independent values of td and tm) than to parameter te and 
to the shape of the distribution S. This information is vital for the 
derivation of an approximated model of reduced complexity compared 
to the present one.

The method employed here can be applied to any case where data of 
virus load in wastewater and of medically reported patients are 

available. The application of the suggested method over a period of time 
yields the temporal evolution of the ratio of the total (reported and 
unreported) patients over the reported patients. Apparently, the output 
of the method depends on the assumptions made. A basic assumption 
that permits mathematical treatment of the problem is that the viral 
shedding rate of infected individuals during the days of their disease is 
not constant but follows a distribution which starts from zero, passes 
through a peak/max value at a specific day of the infection and then 
gradually drops to practically zero at the end of the disease days. The 
scope of the present work is to compare different shedding rate distri
butions suggested in literature for SARS-CoV-2 in our model and extract 
the weight of the assumptions/parameters on the results of the method. 
It is found that the main parameter (maximum weight) is the time delay 
between reporting day and maximum shedding rate day.

Fig. 6. Ratio of total (reported and unreported) to reported infected people P for shape (d) function s(t) (normalized viral shedding vs time since infection) with 
disease duration te = 14. The values td (disease detection time) and tm (maximum shedding time) are chosen to have the same difference td-tm.

Fig. 7. Ratio of total (reported and unreported) to reported infected people P for shape (d) function s(t) (normalized viral shedding vs time since infection) with 
disease detection time td = 5, maximum shedding time tm = 4. Examination of the effect of disease duration te.

M. Kostoglou et al.                                                                                                                                                                                                                             



Science of the Total Environment 951 (2024) 175724

9

5. Conclusions

A simple model for calculating the total (reported and unreported) to 
reported infected people ratio based on wastewater viral content is 
introduced. A basic part of the model is the shedding function S(t) 
denoting how the shedding of virus parts by infected people evolves 
during infection. At least five different shapes for this function have been 
proposed in literature. These shapes are reviewed here and carefully 
normalized and rewritten in order to share an hierarchical set of fea
tures. Four of them are found to be quite similar to each other with only 
the fifth one differing from the others. So, there are two fundamentally 
different shapes. These two fundamental shapes are combined to the 
model and applied to medical surveillance and wastewater shedding 
rate data for the city of Thessaloniki for a period of 2022 dominated by 
the Omicron variant of the SARS-CoV-2 virus. It is found that the main 
parameter that determines the results of the model is the difference in 
time (i.e., days) between the maximum shedding and the infections 
reporting day. The duration of the disease (in days) and the exact shape 
of the function S(t) exhibit quite limited influence on the result of the 
calculations. So, the main outcome of the work is that the details of 
function S(t) are not really important in wastewater based epidemiology 
calculations. The most important feature of S(t) is by far the day of 
maximum shedding rate during the disease days of individuals. This 
feature is characteristic of the viral strain, therefore specific for domi
nant variants of each outbreak. Hence, determination of the day of 
maximum viral shedding, which is more feasible and faster than 
approximating the individual shedding distribution, can optimize the 
approaches to estimate disease transmission and spreading using 
wastewater and medical data during outbreaks. Coupling of wastewater 
and medical data is needed to achieve valuable projections for public 
health protection issues.
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