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Oncogenic potential of SARS-CoV-2— o2
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Abstract

The 2019 outbreak of SARS-CoV-2 has caused a major worldwide health crisis with high rates of morbidity and death.
Interestingly, it has also been linked to cancer, which begs the issue of whether it plays a role in carcinogenesis.
Recent studies have revealed various mechanisms by which SARS-CoV-2 can influence oncogenic pathways, poten-
tially promoting cancer development. The virus encodes several proteins that alter key signaling pathways associated
with cancer hallmarks. Unlike classical oncogenic viruses, which transform cells through viral oncogenes or by activat-
ing host oncogenes, SARS-CoV-2 appears to promote tumorigenesis by inhibiting tumor suppressor genes and path-
ways while activating survival, proliferation, and inflammation-associated signaling cascades. Bioinformatic analyses
and experimental studies have identified numerous interactions between SARS-CoV-2 proteins and cellular compo-
nents involved in cancer-related processes. This review explores the intricate relationship between SARS-CoV-2 infec-
tion and cancer, focusing on the regulation of key hallmarks driving initiation, promotion and progression of cancer
by viral proteins. By elucidating the underlying mechanisms driving cellular transformation, the potential of SARS-
CoV-2 as an oncovirus is highlighted. Comprehending these interplays is essential to enhance our understanding

of COVID-19 and cancer biology and further formulating strategies to alleviate SARS-CoV-2 influence on cancer
consequences.
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Schematic representation of SARS-CoV-2 associated alterations contributing to various hallmarks of cancer. PI3K/ AKT/
mTOR: Phosphoinositide 3-kinase/Protein Kinase B/ Mammalian Target of Rapamycin; TGF-3, Transforming Growth
Factor-beta; VEGF, Vascular Endothelial Growth Factor; JNK, Jun N-terminal Kinase; HDAC, Histone Deacetylase; DNMT,
DNA Methyltransferase; HIF-1a: Hypoxia-Inducible Factor 1-alpha; pRB, Retinoblastoma Protein. This image was cre-

ated using BioRender software.
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Introduction
The emergence of SARS-CoV-2 in 2019, leading to the
COVID-19 pandemic, has presented a significant global
health crisis. As of September 13, 2023, over 770 million
confirmed cases and 6.9 million deaths worldwide have
highlighted the ongoing challenges posed by COVID-19
[1]. This crisis has resulted in substantial socioeconomic
difficulties and an unprecedented healthcare crisis, with a
lack of effective treatment exacerbating the situation [2].
Individuals with pre-existing health conditions, includ-
ing diabetes, obesity, hypertension, and chronic obstruc-
tive pulmonary disease (COPD), face an increased risk of
severe complications from COVID-19 [3]. For instance,
COPD increases the severity of COVID-19, with patients
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at a 14-fold higher risk compared to those without COPD
due to compromised respiratory function. This condi-
tion heightens susceptibility to severe respiratory symp-
toms such as pneumonia and acute respiratory distress
syndrome (ARDS) following COVID-19 infection. Car-
diovascular diseases, managed with medications like
ACE inhibitors and ARBs, may inadvertently facilitate
SARS-CoV-2 entry through ACE2 receptors, worsen-
ing cardiovascular complications such as myocarditis
and acute coronary syndrome. Diabetes mellitus exac-
erbates COVID-19 severity, leading to prolonged hospi-
talization and a heightened risk of complications due to
elevated blood glucose levels and compromised immune
responses. Obesity is yet another risk factor for severe
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COVID-19, driven by several interconnected mecha-
nisms. Increased adipose tissue elevates levels of ACE2,
facilitating SARS-CoV-2 entry into cells, including adipo-
cytes, which may serve as reservoirs for the virus. Obe-
sity is linked to insulin resistance and increased activity
of the renin-—angiotensin—aldosterone system, leading
to elevated levels of angiotensin II, which in turn wors-
ens lung injury and inflammation. Furthermore, obesity
impairs pulmonary function, decreases respiratory effi-
ciency, and is linked to chronic low-grade inflamma-
tion, all contributing to worse outcomes in COVID-19
patients. Chronic kidney disease (CKD) predisposes
patients to more severe COVID-19 outcomes, likely due
to compromised immune function and overall health sta-
tus, increasing mortality risk, especially in moderate to
severe cases. Smoking history significantly increases the
severity of COVID-19, possibly due to increased expres-
sion of ACE2 receptors in respiratory tissues, making
smokers more prone to severe infections and requiring
more intensive medical care [4, 5]. Notably, cancer is also
a major risk factor underlying covid-19 as existing clini-
cal studies have shown that cancer patients appear to be
more susceptible to contracting COVID-19 and experi-
encing severe complications, with mortality rates twice as
high as those among non-cancer patients. Moreover, the
impact of COVID-19 on mortality varies based on cancer
type and stage, and patients with hematologic, lung can-
cer and metastatic tumors showing the highest mortality
rates [6—8].

Interestingly, the risk factors associated with COVID-
19 also contribute to cancer development. COPD and
lung cancer are interrelated through shared mecha-
nisms and risk factors, primarily driven by tobacco
smoking and air pollution. Chronic inflammation in
the lungs from these sources generates reactive nitro-
gen and oxygen species (RNOS), which can initiate
carcinogenesis through DNA damage and mutations.
COPD-related mitochondrial dysfunction exacerbates
this process by impairing cellular function and increas-
ing oxidative stress. Inflammatory pathways like NF-kB
and PI3K, activated in COPD, also play roles in cancer
development and progression. The hypoxic conditions
in COPD patients activate hypoxia-inducible factor
(HIF)-1a, supporting tumor cell survival and growth.
The chronic inflammatory milieu in COPD alters the
lung microenvironment, further driving carcinogen-
esis [9, 10]. Obesity is yet another major risk factor that
contributes to cancer risk through chronic inflamma-
tion and metabolic dysfunction. Excess adipose tissue
secretes pro-inflammatory cytokines such as TNF-a
and IL-6, promoting an environment conducive to can-
cer development by stimulating cellular proliferation
and inhibiting apoptosis. Obesity also leads to insulin
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resistance and elevated levels of insulin and insulin-
like growth factor-1 (IGF-1), which can enhance tumor
growth and increase cancer risk in malignancies such
as breast, colorectal, and prostate cancers [11].

Diabetes mellitus, particularly type 2 diabetes, exacer-
bates cancer risk through similar mechanisms. Elevated
blood glucose levels and hyperinsulinemia promote can-
cer progression by stimulating cell proliferation and sur-
vival. Insulin and IGF-1, both elevated in diabetes, act as
growth factors that facilitate tumor growth and increase
cancer risk in cancers such as pancreatic, liver, and colo-
rectal cancers. The metabolic disturbances associated
with diabetes, including increased oxidative stress and
inflammation, further elevate cancer risk [12].

Furthermore, Cardiovascular disease (CVD) and
chronic kidney disease (CKD) contribute to cancer devel-
opment through mechanisms involving chronic inflam-
mation, oxidative stress, metabolic disturbances, and
hormonal dysregulation. In CVD, inflammation and oxi-
dative stress from conditions like hypertension promote
DNA damage and ECM stiffening, creating a pro-tum-
origenic environment and enhancing angiogenesis via
increased VEGF expression. CKD exacerbates cancer risk
through systemic inflammation, immune dysfunction,
and accumulation of uremic toxins, which impair the
ability of body to eliminate malignant cells. Additionally,
markers of kidney function such as eGFR and albuminu-
ria are linked to cancer risk, with metabolic disturbances
like insulin resistance and dysregulated RAAS further
promoting oncogenesis [13].

Understanding the mechanisms behind the inter-
relation between these risk factors, COVID-19, and
cancer underscores the importance of investigating
SARS-CoV-2 as a potential oncovirus. Additionally,
recent advancements have revealed potential links
between SARS-CoV-2 and cancer, with studies iden-
tifying shared factors, such as compromised immune
systems and excessive production of pro-inflammatory
cytokines contributing to the increased risk of COVID-
19 infection in cancer patients [14, 15]. Network
analysis studies have identified biological processes
and potential oncogenes affected by COVID-19, sug-
gesting implications for cancer development [16—18]
Moreover, retrospective case series have highlighted
the frequency of certain cancer types among COVID-
19 patients, with lung cancer displaying the highest
mortality rate [8]. These findings underscore the poten-
tial correlation between cancer types and COVID-19
outcomes, necessitating further research to elucidate
underlying mechanisms and implications.

In the present review, we discuss the various bio-
logical alterations induced by SARS-CoV-2 infec-
tion and its proteins with respect to cancer hallmarks.
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Furthermore, we examine the shared signaling path-
ways and molecular modifications that occur dur-
ing SARS-CoV-2 infection, paralleling the processes
observed in the initiation and progression of cancer.
We have further sought to unravel the intricate inter-
play and potential connections between these two com-
plex phenomena.

Computational tools and approaches

into SARS-Cov-2 and host protein interactions
Studying the interaction of SARS-CoV-2 proteins with
host proteins through in silico approaches using vari-
ous computational tools has elucidated key genes and
molecular interactions between the virus and host. These
approaches have identified and characterized the mecha-
nisms of viral infection and its subsequent effects on host
cellular pathways. Table 1 summarizes the different com-
putational research and software that have been utilized
to analyse the interactions between SARS-CoV-2 pro-
teins and mammalian oncogenes or tumor suppressor
proteins, highlighting the hallmarks of cancer and altered
signaling pathways involved.

Network analysis using tools like Cytoscape and
BiNGO has mapped interactions between SARS-CoV-2
and host proteins, identifying key players such as SRC,
MYC, EGFR, c-Jun and c-Fos which are involved in
oncogenic pathways related to proliferation and immune
response [17]. Furthermore, protein—protein interaction
(PPI) network analysis has uncovered links between viral
proteins (e.g., NSP7, NSP9, NSP13) and host proteins
involved in centrosome processes and DNA polymer-
ase complexes, leading to disruptions in DNA damage
response and cell cycle regulation [19, 21]. Docking stud-
ies are yet another approach that have detailed interac-
tions between the virus S protein and receptors like EGFR
and VEGFR, which may influence tumor growth [20].
Additionally, proteomic analysis with tools like SAINT-
express and MSFragger has expanded our understand-
ing of interactions between SARS-CoV-2 proteins and
host proteins, revealing their roles in protein biogenesis,
apoptosis resistance, immune evasion, and metabolic
dysregulation [18]. These computational approaches are
invaluable for uncovering the intricate web of interac-
tions between SARS-CoV-2 and host proteins, provid-
ing critical insights into viral pathogenesis and potential
therapeutic targets (Table 1).

COVID-19 in patients with malignancies

COVID-19 has emerged as a significant concern for
individuals with cancer, with numerous studies indicat-
ing a notable correlation between infection of virus and
mortality rates due to malignancy. For instance, reports
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summarising data from various regions including Europe,
America and Asia have revealed higher case fatality rates
among hematological malignancy (HM) patients with
COVID-19 [23]. Moreover, another comparable cohort
study encompassing multiple countries, including, UK,
Poland, Italy, Spain, Belgium, USA, France and Tur-
key reported mortality rate among lymphoma patients
with COVID-19 to be approximately around 30% [24].
Another retrospective study from Tertiary cancer care
hospital has further underscored the occurrence rate of
COVID-19 in hospitalized cancer patients to be around
6.0% higher than the general population. Notably, the
case fatality rate (CFR) among cancer patients with
COVID-19 has been found to be substantially higher, at
14.52%, compared to the CFR in the general population
[25]. In line with this, a multicentre observational study
involving 19 centres across UK, Italy, Germany and Spain
highlighted about the increased vulnerability of cancer
patients to COVID-19 and further showing differential
mortality rates across various cancer types. In accord-
ance with other studies, haematological malignancies
have been majorly associated with poor outcomes in
COVID-19 cases among cancer patients [26].

Overall, these data from various studies highlight the
significant impact of COVID-19 on individuals with can-
cer, with heightened mortality rates observed across dif-
ferent cancer types. This correlation shows the complex
interplay between viral infections and cancer outcomes,
warranting further investigation into potential viral influ-
ences on cancer development and progression.

SARS-CoV-2 proteins regulating oncogenic
pathways and cancer risk

SARS-CoV-2, the virus responsible for the COVID-19
pandemic, has been increasingly linked to the dysregu-
lation of crucial oncogenic pathways, highlighting its
potential role in cancer development and progression.
Recently, bioinformatics studies have identified several
cancer-associated molecular targets influenced by virus
infection (Table 2).

SARS-CoV-2 exerts a notable influence on tumo-
rigenesis through various mechanisms including the
modulation of proliferative signaling pathways, inflam-
matory responses, the role of tumour suppressor mole-
cules and oncogenes, oxidative stress and DNA damage
repair pathways, epigenetic signaling, and cellular
metabolism-associated pathways (Fig. 1) [19, 35-39].
One notable pathway affected by SARS-CoV-2 is the
PI3K/AKT/mTOR pathway, which plays a crucial role
in regulating cell proliferation and survival. The virus
can also impact the MAPK pathway, another critical
signaling cascade involved in cell growth and differen-
tiation [40]. Additionally, SARS-CoV-2 has been shown
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to interact with receptors, such as the Eph receptor,
potentially disrupting downstream signaling cascades
associated with oncogenesis [41]. Furthermore, dysreg-
ulation of the EGFR signaling pathway, observed in var-
ious tumour types, can be influenced by SARS-CoV-2
infection, either through overexpression or mutation
within the EGFR gene [42]. Alterations in actin-bind-
ing proteins and RNA-binding proteins have also been
implicated in promoting tumour growth, highlighting
the additional pathways affected by the virus [21]. In
the following section, we delve into the intricate corre-
lation between SARS-CoV-2 proteins and their impact
on diverse oncogenic molecules and the pathways they
share.

Tumor suppressor proteins and oncogenes

Tumor initiation is the first critical step in carcinogen-
esis, marked by genetic and epigenetic alterations that
transform normal cells into malignant ones. This process
involves the inactivation of tumor suppressor genes and
the activation of oncogenes, both of which disrupt nor-
mal cell regulation. The activation of oncogenic signaling
pathways further drives tumor cell growth, survival and
proliferation. DNA damage, often induced by environ-
mental factors or oxidative stress, leads to mutations that
contribute to genomic instability [43]. Such damages are
further induced by oxidative stress that generates reactive
oxygen species (ROS). In addition to the genetic altera-
tions, epigenetic modifications, such as DNA methylation
and histone changes, also alter gene expression, often
silencing tumor suppressors or activating oncogenes [44].
Following tumor initiation, the metabolic reprogram-
ming of cells is rewired to meet the energy demands of
rapidly dividing cells, thereby fostering tumorigenesis
[45]. Collectively, these factors create an environment
conducive to the emergence and expansion of initiated
cells, setting the stage for tumor promotion. Notably,
SARS-CoV-2 proteins have been implicated in regulating
the key regulators of these hallmarks, that contribute to
cancer initiation and promotion (Fig. 2) [19].

In normal cellular physiology, proto-oncogenes and
tumor suppressor genes tightly regulate cellular growth,
differentiation and essential biological processes. Dysreg-
ulation of these genes, either through the loss of tumor
suppressor function or the gain of oncogene function, is
a hallmark of cancer development [46]. In this context,
SARS-CoV-2 and its proteins exert a significant influ-
ence on the regulation of such genes. For instance, pRB
and p53, the two major tumor suppressor genes which
play central roles in the regulation of proliferation and
survival of the cells are targeted by SARS-CoV-2 non-
structural proteins, NSP 15 and NSP 3, respectively [35,
36, 47]. NSP-15, an endonuclease, via its retinoblastoma
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protein-binding motif (LXCXE/D) binds to hypo-phos-
phorylated form of pRB, and induces its nuclear export
into the cytoplasm where pRB associates with ubiquitin
leading to its proteasomal degradation [35]. On the other
hand, p53 is degraded via the interaction of the SARS
unique domain (SUD) and papain-like protease of SARS-
CoV-2 NSP-3 protein with E3 ubiquitin ligase ring-finger
and CHY zinc-finger domain-containing 1 (RCHY1) [36].
Loss of function of both of these genes leads to cell cycle
dysregulation ultimately leading to uncontrolled prolifer-
ation and survival resulting in cancer development [48].

An oncogene targeted by SARS-CoV-2 is TUBAI1C,
which is significantly upregulated in tumor tissues.
TUBAI1C plays a role in promoting proliferation and
oncogenesis, particularly in glioma and pancreatic ductal
adenocarcinoma, by regulating the cell cycle progres-
sion [49, 50]. Interestingly, mass spectrometry analysis
of HCT116 cells transfected with the nucleocapsid pro-
tein of SARS-CoV-2 has shown a notable increase in the
expression of TUBAIC gene [51]. SARS-CoV-2 impact
on increased TUBA1C expression pattern suggests a
potential role for the virus in promoting proliferative
signaling, an important hallmark of cancer.

Moreover, mucin, characterized as an oncogene
emerges as another crucial link between SARS-CoV-2
and cancer. Many studies have consistently demonstrated
the oncogenic role of mucin genes including MUC-1,
MUC-5AC, MUC-16, MUC-4 and TAG-72 with their
overexpression often associated with poor progno-
sis of cancer [52-54]. Further, an elevated mucin-1 can
activate TGF-a and EGFR-induced Receptor Tyrosine
Kinase (RTK) signaling, leading to increased cell prolif-
eration and survival [55]. Remarkably, a clinical study has
revealed that critically ill COVID-19 patients also dis-
play elevated level of MUC-5AC, MUC-1 and TAG-72
[56, 57]. This notable elevation of mucins in COVID-19
patients not only reflects a significant aspect of COVID-
19 pathology but also poses a potential risk factor for
cancer progression in affected individuals. However,
further extensive investigation is required to unravel the
underlying mechanisms.

Oncogenic signaling pathways

Dysregulation in key signaling pathways including RAS/
RAF/MEK/ERK/PI3K/AKT signaling that play crucial
role in cell growth, survival and proliferation gener-
ally leads to cancer development and progression [58].
Moreover, the SARS-CoV-2 emerges as a significant
player in regulating oncogenic signaling pathways asso-
ciated with cell proliferation and growth. Specifically, it
impacts pathways like PI3K/AKT/mTOR and MAPK
[59]. One of its target receptors is the erythropoietin-
producing hepatocellular carcinoma (Eph) receptor,
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Fig. 1 Schematic diagram illustrating various key oncogenic signaling molecules or pathways targeted by SARS-CoV-2 NSP, N, M and S protein. The
activation of oncogenic pathways can lead to the conversion of a normal cell into a cancer cell. This image was created using BioRender software

which belongs to the family of receptor tyrosine kinases
(RTKs) and found in various tissues and organs, includ-
ing the lung, liver, colon, small intestine, heart, prostate
and kidney. Eph receptors also serve as a potential entry
point for the SARS-CoV-2 virus, potentially disrupting
downstream signaling cascades. Based on existing litera-
ture, a study suggested that the spike protein of the virus
can stimulate Eph receptors, leading to the activation of
pathways such as PI3K/AKT/ERK [41]. Any perturbation
within these pathways, whether caused by the activation
or overexpression of extracellular signaling molecules or
mutations in RTKs, has the potential to strongly drive
oncogenesis [59]. Hence, the influence of SARS-CoV-2
on oncogenic signaling pathways, especially through its
interaction with Eph receptors, underscores its potential
role in promoting cancer-related processes.

What makes this connection more fascinating is
the involvement of epidermal growth factor recep-
tor (EGFR) signaling pathway. Dysregulation of EGFR
signaling is observed in various tumor types with either

overexpression or mutation within the EGFR gene known
to fuel the oncogenic process [60]. Intriguingly, recent
research investigations have suggested that EGFR might
serve as one of the potential receptors with which SARS-
CoV-2 spike RBD domain interacts [42]. Docking analysis
has further shown comparable binding affinity between
the viral spike protein and EGFR/VEGER in glioma cells,
similar to angiotensin converting enzyme 2 (ACE2) [20].
Given that EGFR and VEGFR are commonly expressed
in many tumor types, including glioma cells [20, 61], this
interaction suggests that the virus could activate EGFR
and its downstream signaling, potentially exacerbating
oncogenic pathways. Interestingly, various bioinformatic
and in vitro studies have confirmed increased EGER sign-
aling and its downstream pathways, such as AKT and
ERK1/2, in SARS-CoV-2 infected cells mediated by the
spike RBD domain [42, 62—64]. Therefore, these findings
underscore the oncogenic implications of SARS-CoV-2,
specifically its involvement in key cellular signaling path-
ways, notably implicating EGFR.
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are marked: NSP (Non-Structural Proteins), N (Nucleocapsid Protein), M (Membrane Protein) and S (Spike Protein). p53, Tumor Protein 53; pRB,
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and Rad3-Related Protein; C-RAF, RAF Proto-Oncogene Serine/Threonine-Protein Kinase; HSP27, Heat Shock Protein 27; BAK, BCL2 Antagonist/Killer;
MCLT1, Myeloid Cell Leukemia 1; HLAC, Human Leukocyte Antigen C; HSPAIL, Heat Shock Protein A1-like; DNMT1, DNA Methyltransferase 1; ROS,
Reactive Oxygen Species; NO, Nitric Oxide; HIF1-a, Hypoxia-Inducible Factor 1-Alpha. This image was created using BioRender software

Oxidative stress, DNA damage and apoptosis

The interplay between oxidative stress, DNA damage
and apoptosis emphasizes the critical role of DNA dam-
age response (DDR) pathways in maintaining genomic
integrity and preventing cancer initiation and progres-
sion. For instance, in a normal cell, the DDR pathway
plays a crucial role in preserving genomic integrity
through cell cycle control, DNA repair and apopto-
sis. However, in cancer cells, dysregulation of DNA

replication, repair pathways and cell cycle checkpoints,
and increased oxidative stress contribute to genomic
instability and resistance to apoptosis thereby increas-
ing cancer susceptibility [65, 66]. Notably, emerg-
ing evidence suggests that SARS-CoV-2 proteins have
critical role in dysregulating DDR pathways and resist-
ing cell death similar to cancer cells [19]. Understand-
ing the interplay between viral infection and genomic
instability may shed light on potential mechanisms
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underlying COVID-19 pathogenesis and its association
with cancer risk.

For example, the NSP13 protein of SARS-CoV-2 is
a promising target for antiviral drugs due to its high
sequence conservation and crucial function in the rep-
lication of virus [67]. Cell cycle arrest, YH2AX histone
phosphorylation, replication fork stress, and DNA dam-
age are caused by the interaction of NSP13 protein with
DNA polymerase § [37]. The stress or any defects in
replication fork is known to contribute to tumor devel-
opment [68]. Given the high similarity (99.8%) between
NSP13 of SARS-CoV and SARS-CoV-2 [69], it is reason-
able to infer that both may employ the similar mecha-
nism to target DNA replication. Moreover, SARS-CoV-2
infection impairs DNA repair pathways, mediated by N
and RNA-binding proteins, ORF-6 and NSP13, which
degrade DNA damage checkpoint protein CHK1 [70].
Additionally, SARS-CoV-2 infection also induces over-
expression of DNA damage-related checkpoints, such
as ATR, pCHK1 and yH2AX expression [71]. These
findings strengthened the ability of the virus to induce
genomic instability, potentially contributing to tumor
development.

SARS-CoV-2 employs multiple mechanisms to inter-
fere with cellular processes, potentially promoting can-
cer development. The nucleocapsid (N) protein activates
Cyclooxygenase-2 (COX-2) via NF-kB and C/EBP sites,
potentially leading to increased COX-2 expression [72].
Elevated COX-2 levels are linked to cancer progression
through genomic instability and DNA damage [73-75].
Since SARS-CoV-2 N protein shares 90% similarity with
SARS-CoV, suggesting a similar potential for COX-2
dysregulation and genomic instability [76]. SARS-CoV-2
infection also upregulates C-reactive protein and pro-
oxidant genes, further inducing DNA damage [77-81].
The increased ROS species production is another method
of causing genomic instability. In a tadpole model, it has
been demonstrated that peptides generated from the
virus’s spike protein increase the levels of nitrites, hydro-
gen peroxide, and reactive oxygen species (ROS) and
enhance the activities of catalase and superoxide dis-
mutase [82]. Increased expression of oxidative markers
is known to lead to ROS production, which plays a role
in various stages of tumorigenesis [83]. Therefore, it is
plausible that the Spike protein, through its impact on
oxidative markers and ROS expression, may contribute to
DNA damage and oncogenesis.

Previous studies suggest that SARS-CoV-2 infection,
particularly its M and spike proteins, activates p38 kinase
and inflammatory pathways, leading to cytokine storm
[84—87]. This cascade is known to result in the phospho-
rylation of heat shock protein 27 (HSP-27), and interest-
ingly a study has explored this relation and demonstrated
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the upregulation of p38 kinase and the subsequent phos-
phorylation of its downstream target HSP-27, following
SARS-CoV-2 infection [88, 89]. The phosphorylation of
HSP-27 is known to impede apoptosis-related processes
and associated with poor prognosis in cancers [67, 90].
The activation of HSP-27 by viral proteins may contrib-
ute to cancer development by disrupting critical cell
death mechanisms.

Another protein responsible for evading apoptosis is
SARS-CoV-2 NSP-3 protein. The SARS unique domain
(SUD) and papain-like protease of NSP3 interacts with
RCHY]1, leading to the degradation of the tumor sup-
pressor protein p53 [36]. Since p53 is crucial for apop-
tosis and cancer prevention [91, 92], its downregulation
by SARS-CoV-2 NSP-3 may promote tumorigenesis by
inhibiting cell death pathways. Additionally, NSP-14 of
SARS-CoV-2 interacts with SIRT-5, enhancing its activity
[93]. SIRT-5 is implicated in inhibiting apoptosis and pro-
moting hepatocellular carcinoma progression [94], the
interaction facilitated by NSP-14 could contribute to cell
death evasion, potentially fostering tumor development.

Recent studies reveal that SARS-CoV-2 N protein
interacts with the anti-apoptotic protein MCL1, enhanc-
ing viral replication by stabilizing MCL1 through the
recruitment of USP15. This prevents MCL1 ubiquitina-
tion and allows it to inhibit mitochondrial-mediated
apoptosis by sequestering BAK [95]. As MCL1 overex-
pression is linked to various cancers, its stabilization by
SARS-CoV-2 N protein represents another mechanism
promoting cell death evasion and potentially contrib-
uting to the cancer phenotype [96, 97]. These findings
highlight the intricate interactions between viral proteins
and apoptotic pathways, suggesting potential therapeu-
tic targets for both viral infections and cancer. Further
research is needed to fully understand these interactions
and develop strategies to mitigate the oncogenic effects
of SARS-CoV-2.

Dysregulation of cellular metabolism and epigenetic
alterations

Epigenetics, the study of heritable changes in gene
expression not stemming from DNA sequence altera-
tions, plays a critical role in normal embryonic develop-
ment. However, dysregulation of epigenetic mechanisms
like DNA methylation and histone modifications contrib-
utes to oncogenesis [98, 99]. Concurrently, cancer cells
also exhibit metabolic alterations, including shifts in gly-
colysis, glutamine metabolism and mitochondrial func-
tion, supporting increased proliferation further resulting
in cancer initiation and growth [100-102]. Similarly, the
SARS-CoV-2 also possess the ability to induce epige-
netic changes and deregulate cellular metabolism to pro-
mote their replication, potentially exacerbating cancer
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development. This intricate interplay between viral infec-
tion, epigenetics and metabolic dysregulation under-
scores the multifaceted nature of oncogenesis.

SARS-CoV-2 proteins, particularly ORF-8, interact
with DNMT-1 and BRD4, potentially disturbing critical
epigenetic modifiers implicated in cancer progression
[19, 38, 103]. Moreover, in addition to CpG methylation
SARS-CoV-2 infection induced epigenetic changes, like
hypomethylation of the HSPA1L promoter, that may also
contribute to cancer development [104, 105]. Dysregu-
lation of HLA-C expression via epigenetic mechanisms
that is also responsible for the development of various
cancers including lung or prostate cancer further empha-
size the potential cancer risk associated with COVID-19
[106, 107].

Additionally, SARS-CoV-2 has potential role in dys-
regulating cellular metabolism for instance the inter-
action of NSP14 with SIRT-5 could enhance SIRT-5
activity, potentially remodelling serine catabolism [40].
Previous studies have highlighted the significance of
increased SIRT-5 activity in tumor development and its
role in the dysregulation of serine catabolism, a key fac-
tor driving cellular proliferation in tumors [108], Hence,
it is noteworthy that NSP14 by enhancing SIRT-5 activity
might remodel the serine catabolism and facilitate tumor
spread. These findings emphasize the complex inter-
play between SARS-CoV-2, epigenetics and deregulated
metabolism, highlighting potential mechanisms underly-
ing increased cancer risk associated with COVID-19.

Tumor-associated Inflammation
Inflammation within the tumor microenvironment
(TME) plays a pivotal role in cancer progression, with
cytokines orchestrating cell-to-cell interactions that fos-
ter tumor growth and survival [109]. Chronic inflam-
mation plays a crucial role in tumor development by
shaping the TME and promoting tumor progression. It
also shifts the balance toward tumor advancement by
enhancing immune escape mechanisms. Notably, SARS-
CoV-2 exacerbates this process by targeting key regula-
tors of inflammation and immune evasion. In this section
and the following one, we will explore in detail how these
viral proteins contribute to these two critical hallmarks of
cancer (Fig. 3) [109, 110]. Notably, SARS-CoV-2-induced
cytokine storms exacerbate this inflammatory milieu,
potentially accelerating cancer development. Cytokines
like interleukin-6 (IL-6), interleukin-1 (IL-1) and tumor
necrosis factor a (TNFa), upregulated during severe
COVID-19 infection, are known mediators of pro-tum-
origenic signaling, fostering oncogenesis and metastatic
progression [111].

The S1 subunit of the SARS-CoV-2 spike protein
induces the production of IL-1p, IL-6, and IL-8 in various
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cell types, including lung and intestinal epithelial cells.
Lung cells exhibit a cell type-specific response with acti-
vation of ERK1/2-MAPK and NF-kB pathways, leading to
IL-1p production, while intestinal cells increase IL-6 and
IL-8 production independent of these pathways [112].
This tissue-specific response suggests variability in the
cancer risk associated with SARS-CoV-2 infection. Acti-
vation of these pathways and secretion of inflammatory
cytokines are strongly linked to cancer risk [113-115].
Additionally, another study also provided evidence sup-
porting the role of spike protein in activating NF-xB and
MAPK pathways as well as cytokine production in A549
lung cancer cells [85]. Moreover, spike protein persis-
tence in the blood post-acute COVID-19 raises concerns
about long-term complications, as continual presence
can perpetuate chronic inflammation, a key driver of
tumor growth [116, 117]. The SARS-CoV-2 spike protein
activates the MEK/ERK pathway in lung vascular smooth
muscle and endothelial cells, along with upregulating
p38 kinase, leading to the production of inflammatory
cytokines, such as IL6, CXCL8, CXCL10 and TNF-a [86,
118]. Additionally, Toll-like receptors (TLR) detect the
spike protein, which activates the NF-kB pathway and
causes innate immune and epithelial cells to produce
inflammatory mediators [87].

Markedly, an interesting research has revealed that
in the case of triple-negative breast cancer cells with
increased ACE2 expression, the M protein induces
aggressive characteristics like proliferation, stemness and
metastasis by activating the NF-«B pathway and upregu-
lating epithelial mesenchymal transition (EMT)-associ-
ated genes and inflammatory cytokines. Co-culture with
M protein-treated cells induces ACE2 expression and
transforms non-aggressive cells towards an aggressive
phenotype, mediated by the crosstalk of NF-«xB and Jak/
STAT3 pathways, IL-6, IL-8 and TNFa expression, and
upregulation of EMT genes [84].

The findings underscore the interconnected relation-
ship between SARS-CoV-2 proteins, inflammation and
cancer. The ability of viral proteins to induce cytokine
storms and activate key signaling pathways associated
with cell survival, proliferation and inflammation sug-
gests a potential link between COVID-19 infection
and cancer development. However, further research is
needed to fully understand the underlying mechanisms
and implications for cancer risk.

Immune escape

Immune evasion is vital for cancer cell proliferation and
metastasis [119]. Similarly, SARS-CoV-2 also employs
strategies to evade the host immune response, similar to
mechanisms observed in cancer cells [120]. This immune
evasion in COVID-19 patients leads to prolonged viral
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presence, which can further contribute to cancer devel-
opment through various mechanisms [121].

The cytokine storm and immune dysregulation are two
important factors. As per the recent clinical studies the
immune system produces an increased amount of pro-
inflammatory cytokines, such as IL-6, IL-1p, and TNEF-
o, in severe COVID-19 cases. This excessive release can
damage tissues and organs, overwhelming the immune
system and impairing its ability to target the virus effec-
tively [70]. As a result, the dysregulated immune response
leads to impaired adaptive immunity, where cytotoxic T
cells and B cells fail to function optimally, allowing the
virus to persist [122]. Additionally, SARS-CoV-2 can
also stimulate the activation of immunosuppressive cells,
such as myeloid-derived suppressor cells (MDSCs) and
regulatory T cells (Tregs), which suppress the activity of
cytotoxic T cells and NK cells, further aiding in viral per-
sistence. The virus can induce the release of immunosup-
pressive cytokines like IL-10 and TGEF-P, which inhibit
effective immune responses and promote tumorigenic
microenvironment. This leads to the prolonged presence
of the virus in the body, inducing chronic inflammation,
creating a microenvironment conducive to viral persis-
tence, and promoting oncogenesis [123].

Moreover, Toll-like receptor (TLR) activation by the
virus, a part of the innate immune system, can lead to
prolonged viral persistence. While TLR activation is
intended to initiate immune responses, excessive activa-
tion can lead to chronic inflammation and immune sup-
pression, aiding in viral persistence and immune evasion
[124]. Another interesting finding by Huot et al. identi-
fied persistent SARS-CoV-2 infection in macaques, with
viral RNA and antigens detectable in lung macrophages
(BALF Mac) up to 221 days post-infection. This persis-
tence was associated with the decreased production of
IEN-y in NK cells and BALF Mac, which weakened the
immune response. Remarkably, it was demonstrated that
the peptide V3-11, which is generated from the SARS-
CoV-2 spike protein, binds to MHC-E, hence impeding
NK cell function and facilitating viral immune evasion.
These findings reveal how SARS-CoV-2 can persist in
the body and evade immune detection, with implications
for long-term health outcomes and treatment strate-
gies [125]. Notably, SARS-CoV-2 utilizes ORF-8 protein
to decrease MHC class I molecule expression, making
infected cells less detectable to immune cells [126]. In a
similar way, various tumor types including breast cancer,
melanoma, colorectal cancer and cervical cancer employ
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this strategy to downregulate MHC class I expression,
evading T cell cytotoxicity [127-130].

Secondly, the polarization of M2 macrophages, known
for promoting immunosuppression in the tumor micro-
environment, is also observed in COVID-19. SARS-
CoV-2 triggers M2-like responses via Toll-like receptor
2 (TLR2) activation in macrophages, initiating a hyper-
inflammatory state involving neutrophils and CD4*T
cells [131]. This interplay fosters a feedback loop between
macrophages and neutrophils, characterized by the
secretion of cytokines, such as TGF-p and IL-1f [132-
134]. The secretion of TGF-f driven by the interaction of
macrophages and neutrophils has the tendency to polar-
ize macrophages towards an M2 state [132-134]. Ulti-
mately, this immune cell activation, including M2-like
responses, cultivates an immunosuppressive milieu facili-
tating the tumor growth and likely contributing to cancer
progression in COVID-19 [135].

T cell depletion is an another shared feature between
SARS-CoV-2 and cancer. In non-severe COVID-19
cases, decreased T and B cells are observed, similar to
the reduction in tumor-infiltrating lymphocytes, includ-
ing cytotoxic T cells as observed in cancer cells that helps
them avoid immune surveillance [136, 137]. Moreover,
SARS-CoV-2 also induces upregulation of PD-L1 in lung
tissues, possibly through interference with IFN-IRF1 and
NF-«B axes, promoting immune suppression [138]. In a
similar fashion, elevated PD-L1 levels in cancer inhibit T
cell responses thereby promoting immune evasion [138].
Overall, these shared pathways illustrate the adeptness of
the virus in modulating the immune response similar to
that seen in cancer cells.

EMT, stemness and hypoxia

In cancer development, angiogenesis and metastasis are
pivotal processes influenced by hypoxia and EMT [66,
139, 140]. Hypoxia, typical in solid tumors, activates
pathways like HIF-la, promoting both angiogenesis
and EMT, where epithelial cells acquire mesenchymal
traits leading to spread of tumor to distant part of the
body [141]. Recent studies hint at SARS-CoV-2 proteins
potentially exacerbating these processes, disrupting cel-
lular signaling pathways associated with EMT and tumor
angiogenesis, further escalating cancer risks (Fig. 4).

The Renin—Angiotensin—Aldosterone System (RAAS)
exhibits dysregulation in both cancer and SARS-CoV-2
infection, establishing a significant connection between
these two conditions [139]. It disrupts the balance of key
components, particularly ACE2. This disruption favors
the Angiotensin-Type 2 (AT II)-AT1R axis, leading to
increased AT II activity and downregulation of ACE2
[142, 143]. Elevated AT II levels not only promote angi-
ogenesis through increased angiopoietin-2 protein but
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also activate cancer-associated fibroblasts (CAFs). These
CAFs are significant contributors to cancer progression,
as they stimulate angiogenesis, modulate the extracellu-
lar matrix and release growth factors [144]. Activation of
CAFs is also associated with increased collagen-1 pro-
duction which leads to fibrosis. Fibrosis, in turn, reduces
blood flow and induces hypoxia which in turn promotes
angiogenesis by upregulating HIF-1 alpha [145]. Addi-
tionally, the elevated AT II levels induced by SARS-CoV-2
infection have been implicated in promoting the develop-
ment of cancer stem cells, which are associated with can-
cer initiation, metastasis and relapse [146]. Moreover, AT
II has been shown to enhance cell migration and matrix
metalloproteinase expression, indicating its potential
role in facilitating metastasis through various signaling
pathways [147]. Thus, the dysregulation of RAAS dur-
ing SARS-CoV-2 infection not only promotes angiogen-
esis but also enhances the metastatic potential of cancer
cells, highlighting the intricate relationship between viral
infection and cancer progression. In various studies,
the AT II — AT I receptor axis has been found to elevate
vascular endothelial growth factor (VEGF) expression,
promoting angiogenesis in solid tumors such as ovar-
ian, breast and bladder cancers [148, 149]. This increased
VEGF production supports tumor growth by facilitat-
ing the formation of new blood vessels and exacerbating
hypoxia in the TME [150, 151].

Additionally, the SphK/S1P/S1PR pathway, known as
the sphingolipid rheostat signaling, is activated during
SARS-CoV-2 infection due to the cytokine storm leading
to heightened production of S1P [152, 153]. This signal-
ing pathway induces an inflammatory phenotype and
promotes angiogenesis through cooperative signaling
between S1PR1 and VEGEFR2, facilitating tumor vascular-
ization [154, 155]. Elevated SphK1 expression, observed
in adenocarcinomas, correlates with poor survival rates,
suggesting its role in tumor development and angiogen-
esis regulation [156—159]. Thus, the activation of sphin-
golipid rheostat signaling in COVID-19 patients not only
induces inflammation but also contributes to angiogen-
esis, linking it to cancer growth and progression.

Recent research suggests a potential link between
SARS-CoV-2 proteins (M, N and S) and promotion of
metastasis. The M protein, for instance, upregulates
EMT-associated genes and tumor-promoting cytokines,
enhancing invasiveness in breast cancer cells [160]. Co-
culture studies reveal that M protein-treated aggres-
sive breast cancer cells induce ACE2 expression in
non-aggressive cells, potentially enhancing their sus-
ceptibility to SARS-CoV-2 infection and promoting
aggressiveness. This bidirectional signaling may create
a positive feedback loop, contributing to cancer pro-
gression and metastasis [84]. However, more studies
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are needed to validate such findings and understand the
underlying molecular mechanisms.

The S protein of SARS-CoV-2, with its NXT/S motifs,
is implicated in breast cancer metastasis by upregulating
Snail, a key transcription factor in the EMT process [161].
The gamma variant of spike protein, with additional
NXT/S motifs, enhances protein stability and activates
NF-«B signaling, augmenting breast cancer metastatic
potential [162]. Moreover, the spike protein stimulates
Eph receptors, activating metastasis-related molecules
and pathways like RAC-1, MMP-3, JAK-STAT and FAC,
suggesting its involvement in promoting metastasis [41].
Additionally, SARS-CoV-2 infection increases the expres-
sion of ZEB-1 and AXL-1, known oncogenic drivers

-Phosphate; S1PK, Sphingosine-1

-Phosphate Kinase. This image was created using BioRender software

associated with EMT, further highlighting the impact of
the virus on cancer-related processes [163]. In another
study, colon cancer cells stimulated with S and N protein
peptides showed enhanced invasive capabilities via TGF
beta 1 pathway regulation [164]. The N protein is also
shown to activate the AP-1 pathway that is closely linked
to cancer development [165-167]. Additionally, S protein
downregulates E-cadherin while upregulating N-cad-
herin and Snail protein, promoting a more aggressive
phenotype in breast cancer cells [161]. Evidence suggests
significant upregulation of phosphorylated p38 kinase
and its downstream targets, including MAPK-2 and HSP-
27, during SARS-CoV-2 infection [168]. Phosphorylated
HSP-27 promotes metastasis across various cancer types,
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indicating a potential role for SARS-CoV-2 in activating
the p38 MAPK cascade and promoting metastasis [67].
Overall, the M, N and S proteins of SARS-CoV-2 have
shown the ability to influence crucial factors in inducing
EMT. This includes upregulating mesenchymal markers
and activating EMT-associated pathways like TGF beta 1
and NF-«B. These molecular interactions underscore the
potential of the virus to enhance metastatic events within
host cells. Nevertheless, more studies are needed to elu-
cidate the impact of SARS-CoV-2 infection on cancer
progression and metastasis.

NLRP3 Inflammasomes

NLRP3 is a well-known pattern recognition protein
(PRR) and is a key component of the innate immune sys-
tem and is known to sense cellular stress and infection.
It plays a significant role in the initiation of inflamma-
tory responses by activating caspase-1 and facilitating
the release of proinflammatory cytokines like IL-1 and
IL-18. Dysregulation of NLRP3 inflammasome func-
tion has been linked to tumor development, suggesting
its involvement in tumorigenesis. Interestingly, SARS-
CoV-2 by the interaction through N protein results in the
activation of NLRP3 inflammasomes and contributes to
major aspects of cancer biology including inflammation,
immune response, angiogenesis, cell proliferation and
metastasis (Fig. 5) [169]. Additionally, dysregulation of
the RAAS can also trigger this activation, promoting the
assembly and activation of the inflammasome [170, 171].
Activated NLRP3 inflammasomes lead to the secretion
of IL-1B, which plays a significant role in proliferative
signaling in cancers such as breast, colon, gastric, glioma,
head and neck, lung, leukemia and particularly in mela-
noma [169]. Furthermore, the secreted IL-1p triggers
the production of additional proinflammatory cytokines,
such as IL-6, IL-8, IL-10, TNF-a and CXCL10, leading
to a cytokine storm further resulting in inflammation
induced carcinogenesis that has been observed in various
cancers including head and neck carcinoma [172]. This
storm not only enhances tumor proliferation and inflam-
mation but also supports tumor survival and metastasis
through signaling pathways associated with proliferation
and metastasis, such as phosphorylated AKT, ERK1/2,
CREB and Snail [173, 174].

Moreover, previous studies have shown that NLRP3
activation promotes angiogenesis by inducing VEGF
expression through IL-1p secretion [175]. It also aids
immune evasion by upregulating PD-L1 and polarizing
M2 macrophages, and contributes to genomic instabil-
ity by causing DNA damage in cancers like lung and skin
cancer. Additionally, NLRP3 activation supports meta-
bolic reprogramming, including the Warburg effect, by
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stabilizing HIF-1a and increasing glycolysis and mito-
chondrial ROS production [169]. Hence, overactivation
of NLRP3 inflammasome through mechanisms involving
SARS-CoV-2 N protein or the dysregulated RAAS sys-
tem is a significant alteration that can contribute to major
critical signaling of cancer intiation and development.

Conclusions

As the world continues grappling with the repercus-
sions of the COVID-19 pandemic, the evolution of more
infectious mutant viral strains is further impacting lives
globally. The correlation of COVID-19 and cancer poses
significant challenges, as cancer patients are immuno-
compromised and more susceptible to viral infections.
This dual burden has spurred extensive research to
understand the correlation between the two diseases and
to develop suitable therapeutic strategies.

Reports have shown that SARS-CoV-2 proteins, such as
the M protein, non-structural proteins, and spike protein,
influence cellular functions relevant to cancer progres-
sion. These proteins can inhibit tumor suppressor genes,
activate survival signaling pathways, stimulate cytokine
production, and activate the NF-kB pathway, creating a
tumorigenic environment. Additionally, SARS-CoV-2
proteins can promote metastasis by upregulating mes-
enchymal markers and metastasis-related signaling path-
ways. They have the ability to alter metabolic pathways,
cause damage to DNA, and inhibit DNA repair systems,
which can result in genomic instability and metabolic
reprogramming that are specific to cancer cells. These
viral proteins also influence programmed cell death eva-
sion and aid immune evasion through upregulation of
PD-L1 and M2 macrophage polarization. COVID-19
is further linked with epigenetic modifications induced
by SARS-CoV-2, such as DNA methylation and histone
deacetylation, that further may lead to changes in gene
expression associated with cancer development. The acti-
vation of NLRP3 inflammasomes by SARS-CoV-2 inter-
sects with multiple cancer hallmarks, suggesting a role in
cancer development and progression. Nevertheless, most
of these findings are based on bioinformatics and in vitro
studies, necessitating further in vivo and clinical investi-
gations to determine their clinical significance.

Recent studies have revealed that both SARS-CoV-2
and tumor cells utilizes similar mechanistic pathways to
their advantage. These include inducing immunosup-
pression, oxidative stress, disrupting DDR signaling, acti-
vating stemness pathways, and downregulating tumor
suppressor proteins. Additionally, the potential reactiva-
tion of latent oncogenic viruses in COVID-19 patients
could elevate cancer risk. Consequently, it is essen-
tial to monitor individuals infected with SARS-CoV-2,
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particularly those with chronic cases, for signs of can-
cer development. Conversely, cancer patients are more
vulnerable to SARS-CoV-2 and at higher risk of severe
COVID-19 symptoms and related complications. Identi-
fying and targeting common pathways between COVID-
19 and cancer could lead to treatments that address both
diseases. Despite the pandemic, timely diagnosis, treat-
ment, and monitoring of cancer patients remain essential.

In summary, SARS-CoV-2 possesses oncogenic poten-
tial, impacting multiple hallmarks of cancer through
its proteins and interactions with cellular pathways.
While additional investigations are necessary to validate
these findings and determine their clinical significance,
understanding the relationship between COVID-19 and

cancer-causing hallmarks. The figure details how these pathways
moting inflammation, inducing angiogenesis and metastasis. This

cancer risk is crucial for future research and therapeutic
interventions.

Future perspective

Comprehensive surveillance and monitoring are neces-
sary to address the long-term influence of COVID-19
on cancer, especially for those who have been suffering
COVID symptoms for a long time, since they may be
more susceptible to the cancer risk. Regular screen-
ing, including biomarker testing and imaging studies,
can facilitate early detection and timely intervention.
Integrating comprehensive surveillance protocols into
healthcare systems is essential, especially for high-risk
groups such as cancer patients and individuals with
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pre-existing conditions. Digital health tools, includ-
ing telemedicine can play a critical role in diagnosing
and monitoring cancer risk in COVID-19 or post-acute
sequelae of SARS-CoV-2 (PASC) patients by enabling
remote consultations, digital screenings, and continu-
ous monitoring of cancer-related biomarkers. Through
digital tools like mobile applications, wearables, and AI-
driven algorithms, patients can undergo regular health
assessments, participate in personalized cancer screen-
ing programs, and receive real-time alerts for any con-
cerning changes [176]. Furthermore, advancements in
artificial intelligence (AI) and machine learning (ML) are
transforming the management of long-COVID and its
potential oncogenic effects. Al-driven predictive models
can analyze large datasets to identify patterns and pre-
dict disease outcomes, helping stratify patients based
on risk levels and personalize monitoring plans [177].
The discovery of specific biomarkers associated with
chronic inflammation, immune dysregulation, and onco-
genic pathways has paved the way for precision medicine
approaches in managing long-COVID and cancer. These
approaches enable early detection and targeted interven-
tions, improving treatment outcomes and reducing the
risk of cancer progression in post-COVID-19 patients.
Another non-invasive technique is liquid biopsy tech-
nologies, particularly c¢fDNA analysis, that could play
a pivotal role in monitoring and surveillance of cancer
risk in PASC patients. Given the chronic inflammation
and immune dysregulation associated with PASC, there
may be an elevated risk of cancer development over time.
Liquid biopsy allows for real-time monitoring of molec-
ular changes, making it possible to detect early signs of
malignancy before they become clinically apparent. This
approach could enable personalized surveillance strate-
gies, allowing for timely interventions and potentially
improving long-term outcomes in PASC patients [178].
Additionally, by integrating liquid biopsy with advanced
genomic tools like NGS, clinicians could identify specific
mutations or alterations associated with higher cancer
risk in this population, leading to more targeted and pro-
active cancer prevention efforts.

Immunotherapy is yet another valuable tool for monitor-
ing and diagnosing cancer risk in PASC patients by targeting
the immune dysregulation seen in both COVID-19 and can-
cer. By monitoring the immune parameters, like, cytokines,
T cell exhaustion, and lymphopenia that is also seen in severe
COVID-19 cases including PASC patient, it may be possible to
detect early signs of immune-related abnormalities that could
indicate a heightened cancer risk [179, 180]. Therefore, immu-
notherapy offers a dual role in both managing the immune
aftermath of COVID-19 in PASC patients and potentially pro-
viding early diagnostic indicators for cancer risk, making it a
critical tool in the post-COVID-19 landscape.
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