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Abstract
Coronavirus disease 2019 (COVID-19) has been suggested to increase the risk of mem-
ory decline and Alzheimer's disease (AD), the main cause of dementia in the elderly. 
However, direct evidence about whether COVID-19 induces AD-like neuropathologi-
cal changes in the brain, especially post recovery from acute infection, is still lacking. 
Here, using postmortem human brain samples, we found abnormal accumulation of 
hyperphosphorylated tau protein in the hippocampus and medial entorhinal cortex 
within 4–13 months post clinically recovery from acute COVID-19, together with pro-
longed activation of glia cells and increases in inflammatory factors, even though no 
SARS-COV-2 invasion was detected in these regions. By contrast, COVID-19 did not 
change beta-amyloid deposition and hippocampal neuron number, and had limited ef-
fects on AD-related pathological phenotypes in olfactory circuits including olfactory 
bulb, anterior olfactory nucleus, olfactory tubercle, piriform cortex and lateral en-
torhinal cortex. These results provide neuropathological evidences linking COVID-19 
with prognostic increase of risk for AD.
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Cognitive decline including memory problems, mental cloudiness 
and difficulty in concentrating (collectively known as “brain fog”) has 
been widely recognized as parts of neuropathological sequelae of 
coronavirus disease 2019 (COVID-19) in recent years (Thaweethai 
et al., 2023), and captures increasing attention on whether and how 
the history of Severe acute respiratory syndrome coronavirus 2  
(SARS-CoV-2) infection would increase the risk of Alzheimer's 
disease (AD) in later life, especially for the elderly (Bonhenry 
et al., 2024; Olivera et al., 2023). However, direct evidence on the 
appearance of AD-related neuropathological features, like abnormal 
accumulation of hyperphosphorylated tau protein and amyloid-beta 
(Aβ) as well as glia dysfunction and neuroinflammation in the brain 
(Long & Holtzman, 2019), in human brain post recovery from acute 
COVID-19 is still in lack.

Here, we collected postmortem human brain samples from in-
dividuals died with SARS-COV-2 non-infected (group “N”, n = 6), 
during acute COVID-19 (group “C”, n = 6), and within 4–13 months 
post-clinically recovered from COVID-19 (group “R”, n = 7). Only 
individuals who had no cognitive impairment reported before 
SARS-COV-2 infection were included, and the infection and recov-
ery of SARS-COV-2 was determined or ruled out by nucleic acid 
amplification test (NAAT). Individual information was summarized 
in Table S1.

We first examined the level of phosphorylated tau (pTau) in the 
hippocampus and medial entorhinal cortex (MEC), since these re-
gions play pivotal roles in the development of AD, and have been 
well-recognized to be vulnerable for pTau accumulation and neuro-
degeneration (Braak et al., 2006). Tau species ranging from 35 to 100 
kD and phosphorylated at multiple AD-related epitopes were mea-
sured. Interestingly, we found that both pTau and total tau showed 
nonsignificant change in patients died during acute COVID-19 com-
pared with individuals without SARS-COV-2 infection, but pTau was 
unexpectedly upregulated in the group clinically recovered from 
COVID-19, especially at AD-related epitopes like Thr181, Thr217 
and AT8 (Figure 1a–c, Figure S1).

Meanwhile, we also evaluated the distribution pattern of pTau in 
the hippocampus and MEC, which were classified here into patterns 
1–4 (P1–P4) based on the immunohistochemical staining intensity 
(supplementary methods—Data S1). The post-acute COVID-19 group 
generally exhibited higher degree of pTau aggregation compared 
with SARS-COV-2 non-infected controls at Thr181 and Thr217 epi-
topes (Figure 1d,e).

We next examined two other AD-related pathologies including 
Aβ deposition and hippocampal neuron loss. By contrast to tau, no 
statistical change in the density and size of Aβ plaques was mea-
sured (Figure 1f–h), and no hippocampal neuron loss was found both 
during and post-acute COVID-19 (Figure 1i,j).

Besides, taken into consideration that COVID-19 and early-
stage AD shared symptom of smell loss (Doty,  2022; Tsukahara 
et al., 2023), a newly-identified biomarker of cognitive impairment 
(Murphy, 2019), we wonder whether acute or post-acute COVID-19 
affects pTau and Aβ in the olfactory circuit consisting of olfactory 
bulb (OB), anterior olfactory nucleus (AON), olfactory tubercle (OT), 

piriform cortex (Pir) and lateral entorhinal cortex (LEC). By contrast 
to the hippocampus and MEC, no significant change in pTau and Aβ 
plaque was measured in all olfactory areas (Figure S2).

Subsequently, we sought to explore whether the elevation of 
pTau was associated with potential invasion of SARS-COV-2 into 
the brain, which was found to be capable of directly inducing tau 
hyperphosphorylation in cultured neuroblastoma cells and 3D 
human brain organoids (Di Primio et al., 2023; Ramani et al., 2020). 
However, we did not observe the existence of SARS-COV-2 in the 
brain utilizing immunohistochemical staining of nucleocapsid (N) and 
spike glycoprotein (S) protein (Figure S3). Consistently, we did not 
detect SARS-COV-2 ORFab1 and N protein mRNA by both real-time 
quantitative reverse transcription PCR (RT-qPCR) and droplet digital 
PCR (ddPCR) (Figures S4 and S5).

Given an important contribution of abnormal glia activation and 
neuroinflammation to the elevation of pTau in the development of 
AD (Leng & Edison, 2021), we measured whether COVID-19 induced 
glia dysfunction in the hippocampus and MEC, and found increased 
soma volume of and less ramified processes of microglia during 
and post-acute COVID-19, two morphological signs indicating the 
activation microglia (Leng & Edison, 2021; Woodburn et al., 2021), 
though microglia did not change in number (Figure 2a–e). Similarly, 
the number of GFAP-labeled astrocytes did not change, but both the 
soma volume and complexity of processes of astrocytes increased 
post recovery from COVID-19 compared with acute COVID-19 
(Figure  2f–j), indicating that astrocytes were also activated during 
and post COVID-19. Consistently, the activation of glia cells was also 
indicated by the upregulation in protein levels of Iba1, CD68, GFAP 
and S100β in groups of acute and post-acute COVID-19 (Figure S6).

Moreover, the expression levels of inflammatory factors includ-
ing tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β) and 
interleukin-6 (IL-6) were all upregulated in acute and post-acute 
COVID-19, though other cytokines like interleukin-10 (IL-10) and 
interleukin-18 (IL-18), as well as neuroinflammation-related proteins 
like high mobility group box 1 (HMGB1) and plasminogen activator 
inhibitor-1 (PAI1) remained nearly unchanged (Figure 2k).

In line with our results, the risk of AD has been recently found to 
increase post-acute COVID-19 (Bonhenry et al., 2024). A follow-up 
study found persist elevation of AD-related plasma biomarkers in-
cluding total-tau, pTau181, inflammatory cytokines, NfL, neurogr-
anin, etc. at 1 to 3 months after initial SARS-CoV-2 infection (Sun 
et al., 2021). Meanwhile, following with structural changes in brain 
during acute COVID-19 (Douaud et al., 2022), persistent white mat-
ter changes in the brain of people recovered from COVID-19 were 
also reported at 1-year follow-up (Huang et al., 2022). These find-
ings suggest the existence of long-term brain neuropathology after 
COVID-19, which might be at least partly responsible for the post-
acute sequelae of cognition and memory impairment (Hampshire 
et al., 2024).

We sought to investigate in the present study preliminarily the 
potential cause of pTau elevation after COVID-19. In discrepancy with 
several previous studies (Emmi et  al., 2023; Gagliardi et  al., 2021; 
Stein et  al., 2022), we did not detect SARS-COV-2 particles in all 
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F I G U R E  1 Upregulation of pTau in the hippocampus and MEC post COVID-19. (a–c) pTau at specific epitopes like Thr181, Thr217 and 
AT8 were upregulated in the hippocampus and MEC post-acute COVID-19. Grouping: N, non-infected; C, acute COVID-19; R, recovery from 
COVID-19. N = 6–7 in each group, one-way ANOVA followed by Tukey's multiple comparisons tests. Data were normalized by the mean 
value of group N for each pTau epitope. Extended blots were shown in Figure S1. (d, e) Measurement of pTau distribution pattern in the 
hippocampus and MEC indicated increase of pTau aggregation post-acute COVID-19. Representative images showed pattern 1–4 (P1–P4) of 
pTau accumulation for each epitope and in each group (d). Numbers in pie charts indicated the counts of patients for each pattern (e). N = 6–7 
in each group. (f–h) The overall density and averaged size of 6E10-stained Aβ plaques did not change in acute and post-acute COVID-19. 
N = 6–7 in each group, one-way ANOVA followed by Tukey's multiple comparisons tests. (i, j) Neuronal density in each hippocampal 
subregion did not change in acute and post-acute COVID-19. N = 6–7 individuals in each group, one-way ANOVA followed by Tukey's 
multiple comparisons tests.
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brain regions measured in the present study. Instead, we revealed 
in individuals post-acute COVID-19 prolonged glia activation and 
neuroinflammation, two other important drivers of tau hyperphos-
phorylation in the development of AD (Chen & Yu, 2023; van der 
Kant et al., 2020). In fact, increased glia activation and inflammatory 
factors have been widely-recognized both in the brain and plasma of 
COVID-19 patients (Chen et al., 2020; Huang et al., 2020; Matschke 

et al., 2020; Zhang et al., 2023). The central neuroinflammatory in-
filtration might be a secondary consequence of the peripheral cyto-
kine storm during acute SARS-CoV-2 infection due to the damage of 
brain–blood barrier (Amruta et al., 2022; Schwabenland et al., 2021). 
Excessive activation of glia cells and inflammation in the brain can 
exacerbate tau phosphorylation and aggregation by dysregulating 
tau kinases and phosphatases (Ising et al., 2019).

F I G U R E  2 Prolonged upregulation of glia activation and inflammatory factors expression in the hippocampus post-acute COVID-19. 
(a, b) Representative immunofluorescent images (a) and 3D-reconstruacted morphology (b) of Iba1-stained microglia. (c–e) The number of 
microglia did not change (c), but soma volume significantly increased (d) and branches complexity decreased (e) in acute and post-acute 
COVID-19. N = 6–7 patients or 174–382 cells in each group, ***p < 0.001, one-way (c, d) and repeated measures (e) ANOVA followed by 
Tukey's multiple comparisons tests. (f, g) Representative immunohistochemical images (f) and Sholl analysis diagram (g) of GFAP-stained 
astrocytes. (h–j) The number of astrocytes did not change (h), but both soma volume (i) and processes complexity (j) significantly increased in 
acute and post-acute COVID-19. N = 6–7 patients or 108–194 cells in each group, ***p < 0.001, one-way ANOVA followed by Tukey's multiple 
comparisons tests. (k) mRNA levels of inflammatory factors including TNF-α, IL-1β and IL-6 were upregulated in acute and post-acute 
COVID-19. N = 6–7 patients in each group, one-way ANOVA followed by Tukey's multiple comparisons tests.
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Nevertheless, our pilot study only included a small number of 
postmortem samples, it deserves further investigation to collect 
data from larger cohorts. Besides, it also remains to be elucidated 
whether and how long these AD-associated pathological pheno-
types persist following years to decades after recovery from acute 
COVID-19, including the increased pTau level and neuroinflamma-
tion found here. The prognostic risk of AD might be better indicated 
through long-term measurement of plasma or cerebrospinal fluid bio-
markers (Ossenkoppele et al., 2022), brain imaging of early-AD fea-
tures (Jagust, 2018), and cognition-testing scales (Woo et al., 2020).

In conclusion, we reported here emerging signs of AD-like el-
evation of pTau and neuroinflammation during and post-acute 
COVID-19 in the hippocampus and MEC of postmortem human 
brain, which provided neuropathological evidences about increased 
risk of AD in long COVID-19.
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