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SARS-CoV-2 employs its spike protein’s receptor binding domain (RBD) to enter host
cells. The RBD is constantly subjected to immune responses, while requiring efficient
binding to host cell receptors for successful infection. However, our understanding
of how RBD’s biophysical properties contribute to SARS-CoV-2’s epidemiological
fitness remains largely incomplete. Through a comprehensive approach, comprising
large-scale sequence analysis of SARS-CoV-2 variants and the identification of a fitness
function based on binding thermodynamics, we unravel the relationship between the
biophysical properties of RBD variants and their contribution to viral fitness. We
developed a biophysical model that uses statistical mechanics to map the molecular
phenotype space, characterized by dissociation constants of RBD to ACE2, LY-
CoV016, LY-CoV555, REGN10987, and S309, onto an epistatic fitness landscape.
We validate our findings through experimentally measured and machine learning (ML)
estimated binding affinities, coupled with infectivity data derived from population-level
sequencing. Our analysis reveals that this model effectively predicts the fitness of novel
RBD variants and can account for the epistatic interactions among mutations, including
explaining the later reversal of Q493R. Our study sheds light on the impact of specific
mutations on viral fitness and delivers a tool for predicting the future epidemiological
trajectory of previously unseen or emerging low-frequency variants. These insights offer
not only greater understanding of viral evolution but also potentially aid in guiding
public health decisions in the battle against COVID-19 and future pandemics.
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Since its emergence, the SARS-CoV-2 virus has undergone continuous genetic changes,
giving rise to variants with increased transmissibility such as Alpha, Delta, and the
recent Omicron. Each has contributed to significant surges in global COVID-19
cases. These genetic alterations in the viral genome have a profound impact on the
structure and function of viral proteins, causing consequential changes in viral fitness
(defined as the capacity of the virus to infect). Variants of concern (VoCs), such as
Omicron BA.1, possess specific mutations in the spike protein. They have been linked to
enhanced transmissibility (1, 2), augmented binding to host cell receptors, and heightened
resistance to antibody neutralization (3, 4). Understanding the relationship between
these mutations and viral fitness requires investigating their influence on molecular
properties of affected proteins. Key viral proteins, like the receptor binding domain
(RBD) of the spike protein, play a critical role in facilitating viral entry into host cells by
binding to angiotensin-converting enzyme 2 (ACE2) (5), a functional receptor on cell
surfaces. Furthermore, RBD serves as primary targets for the most potent SARS-CoV-
2-neutralizing antibodies (6) and is subject to evolutionary pressure from the human
immune system. Therefore, mutations on the RBD have been shown to be highly
correlated with increases of fitness.

On the experimental side, Starr et al. (7) systematically scanned through every amino
acid substitution in the isolated RBD to determine the mutation effect on RBD folding
and ACE2 binding and showed a substantial number of mutations are well tolerated
or could even enhance ACE2 binding. In more recent research, Moulana et al. (8, 9)
conducted a thorough examination of the binding affinity across all combinations of
the 15 RBD mutations found in the BA.1 variant of SARS-CoV-2 in comparison to
the original Wuhan Hu-1 strain. This exploration covered a total of 32,768 genotypes
and involved testing against four monoclonal antibodies (LY-CoV016, LY-CoV555,
REGN10987, and S309) as well as the ACE2 receptor. Additionally, global initiatives
that promote data sharing, such as the Global Initiative on Sharing All Influenza Data
(GISAID) (10), provide us with the ability to derive viral fitness based on prevalence
data.

Prior studies have derived a quantitative correlation between fitness and molecular
properties. For instance, Cheron et al. (11) and Rotem et al. (12) devised a theoretical
framework to assess fitness of RNA viruses and validated it using experimental and
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computational methods. Central to their premise is that fitness
comes from the proportion of viral capsid proteins in a folded
state free of antibodies, with state-occupation probability deter-
mined from Boltzmann distribution. SpikePro, a computational
model, uses the spike protein’s amino acid sequence and structure
to estimate SARS-CoV-2 fitness. The model considers the
stability of the spike protein, its binding affinity with ACE2,
and the potential for immune evasion (13). While it has shown
effectiveness in identifying dominant viral strains, it is worth
noting that this is an empirical model whose foundation is not
grounded in biophysical principles. Furthermore, experimental
verification for the model’s predictions has been scarce, which
highlights the need for more rigorous, physics-based models.

The central aim of our study is thus to bridge the gap
between viral fitness and biophysical properties of the RBD.
We concentrate specifically on how emerging mutations affect
both fitness and the binding energies of the RBD to ACE2 and
antibodies. By doing so, we aim to develop a robust methodology
based on statistical mechanics to forecast RBD fitness anchored
in its molecular properties.

This study establishes a biophysical link between binding
affinities and relative fitness for SARS-CoV-2 mutants. To that
end, we have constructed a genotype-to-fitness mapping for the
SARS-CoV-2 RBD under the constraints of successful cellular
entry via ACE2 and influence of neutralizing antibodies. This
mapping equips us with a predictive tool for assessing fitness of
emerging SARS-CoV-2 variants.

Results

The Model. Our RBD fitness function is based on thermody-
namics of protein folding and binding, as described in Fig. 1. For
each mutantmut, the relative fitness compared to the wild typewt

(Wuhan-Hu-1), defined as Fmut
Fwt , follows the same relationship as

the absolute fitness. To avoid confusion, we will simply refer to
this relative measure as the “fitness” F .

We consider the contribution of fitness (infectivity) from RBD
to the virus, denoted F , as proportional to the fraction of RBD
that are folded and free from antibodies. We also consider the
experimental observation that RBD on the spike protein could
adopt two distinct conformations: “up” and “down”, with only
“up” RBD exposing the receptor-binding motif (14–17). As a
result, we adopt a multistate microscopic configuration model
for the RBD that includes the following states: unfolded; folded
in both up and down states and free; folded in up and down
states, and bound to ACE2; and finally, folded, in up and down
states, and bound to one of four distinct antibodies. These
configurations correspond to respective free energies Gu, G↑f ,

G↓f , G↑bA, G↓bA, and G↑ai , G
↓
ai where i indexes antibodies.

In our model, the RBD can only be bound to one antibody at
a time, or ACE2 and to no antibody, or be free from ACE2
and antibodies. We then assume that an RBD can exist at
thermodynamic equilibrium over these states at some finite
temperature Ts, denoted by � = 1/(kBTs), where kB is the
Boltzmann constant. Following Rotem et al. (12), we then
propose that fitness F is proportional to the probability of RBD
being found in the folded state free from antibodies or in the
folded, bound to ACE2 state. This approach is grounded in the
understanding that while binding to the ACE2 receptor is crucial
for initiating infection within an individual, the transmission
of the virus between individuals is predominantly driven by
“free viruses”—those not yet bound to any receptors (18). These
free viruses, contained in the host’s body and airborne droplets,
represent a potential state for initiating further infections in new
hosts.

Fig. 1. Model illustration. Link between fitness and thermodynamics of protein folding and binding. High fitness variants may exhibit improved stability in the
folded state or in the ACE2-bound state to facilitate cellular entry or have the capacity to destabilize bound-to-antibody states, thereby enabling evasion.
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We define the partition function for the up RBD as Ξ↑ =

Ce−�G
↑

bA + ΣiCie−�G
↑
ai + e−�G

↑

f , where C = [ACE2]
C0

and Ci =
[Abi]
miC0

. Here, [...] represents concentration, standard reference
concentration C0 allows us to express C and Ci in dimensionless
form, and mi accounts for the quantity of antibodies required
to neutralize the virus. Similarly, the partition function for the
down RBD, Ξ↓, can be defined analogously, with all instances
of ↑ replaced by ↓. Fitness F can be expressed as

F = �
Ce−�G

↑

bA + e−�G
↑

f + Ce−�G
↓

bA + e−�G
↓

f

Ξ↑ + Ξ↓ + e−�Gu
, [1]

where � is a scaling factor. Considering the experimental
challenge of measuring free energy for the down state RBD,
we need to further simplify this equation.

Since the down RBD does not bind with ACE2, we have
Ce−�G

↓

bA = 0. We further assume that for RBD variants,
the population ratio of down RBD vs. up RBD, is given by

e
−�G↓f

e
−�G↑f

= k. For a given antibody i, we express the difference in

binding free energy between the up and down states of the RBD
as G↓ai = �i + G↑ai .

Defining free energy differences between states as ΔG↑fold =

Gu −G↑f , ΔG↑A = G↑bA −G↑f and ΔG↑ai = G↑ai −G↑f , and given
that naturally occurred RBDs are stable—with the unfolded states
having significantly higher free energy than the folded states (that
is, e−�ΔGfold � 1; see Materials and Methods)—we can simplify
the model as follows:

F = �
C̃e−�ΔG

↑

A + 1

C̃e−�ΔG
↑

A + ΣiC̃ie−�ΔG
↑
ai + 1

, [2]

where C̃ = C
k+1 and C̃i = (1+e−��i )Ci

k+1 . In the yeast display
experiments, the dissociation constant, KD is measured on
isolated RBD with no binding sites obstructed. Therefore we take
KD as a proxy forK ↑D , resulting inΔG↑ ∝ ln(KD). Consequently,
we can express fitness as a logistic function of the logarithm of the
dissociation constants KDA and KDai for ACE2 and antibodies.
Our study is centered on inferring F by fitting a scaling parameter
� and effective molecular concentrations in population C̃ and C̃i
to the biophysical model (Materials and Methods).

Fit of Biophysical Model to Fitness Obtained from Population
Data. We separated our data into training and testing sets (see
Materials and Methods for details) and then calibrated our
biophysical model using observed viral variants (19) from the
population study and incorporated experimental measurements
of binding affinities (8, 9) as an input.

Training of the model involved adjusting six parameters (�, C̃ ,
and C̃i for i ranging from 1 to 4) to achieve the highest correlation
between model prediction and fitness inferred from population
data in the training set.

Given the lack of precise information for k and �i for each
variant, and to identify regression coefficients that are invariant
across RBD variants, the k and e−��i are assumed to be constants
across RBD variants. The validity of these assumptions will be
further discussed in Discussion and SI Appendix. Furthermore,

energy scale T was fixed to 1.6, so that fitted concentrations
(on the order ∼1 to ∼100 nM) agree with values of antibody
concentrations observed in human serum (between 1 and
∼60 nM in severe symptoms) (20). For the calculation of the
effective concentration, we estimate thatm is in the range of 10 to
100 (12) (see Materials and Methods and SI Appendix for details
about fitting).

To demonstrate the predictive power of our biophysical model,
we trained the model on 2% of the observed variants (22
points), achieving a highly satisfactory fit (average R2 = 0.97)
on the training set as shown in Fig. 2A. This result was further
corroborated by the predictive power demonstrated on the test set
with around 1,000 variants (averageR2 = 0.91), thus confirming
the absence of overfitting (Fig. 2B). Our model’s performance
reflects the biophysical understanding that a combination of
strong ACE2 binding and reduced antibody binding from
the four chosen antibodies could provide the virus with a
fitness strategic advantage, enhancing its ability to spread in the
population.

To further explore the behavior of our model, we fixed all
but one of the dissociation constants at their mean value across
mutants and studied the variation of inferred relative fitness as
a function of the unfixed constant. Interestingly, we observed
that variants carrying a combination of Omicron mutations
consistently fell into the upper plateau or linear segment of
our biophysical model (Fig. 2 C–G). This suggests that natural
selection did not favor combinations of mutations that would
lead to high antibody binding. It should be noted that in each
curve on Fig. 2 C–G, four out of five dissociation constants
are fixed at the mean values. Thus, the inferred fitness for each
data point in these one-dimensional cross-sections of the fitness
landscape does not represent its actual fitness.

Predicting Fitness for Variants betweenwtand BA.1. Our model
constitutes an effective tool for forecasting fitness contribution of
RBD to the virus, given molecular properties of their RBD. We
first examine the predictive power for variants between wt and
BA.1.

In Fig. 3A, the model is trained on the experimental dataset
that excludes the G446S mutation and is subsequently tested
on variants containing this specific mutation. Remarkably, our
model even succeeds in predicting fitness of variants bearing
the G446S mutation, a demanding task considering that this
mutation causes escape from the REGN10987 antibody (9). The
model’s ability of predicting the impact of the G446S mutation
on fitness, despite the complexity of correlating complete
immune escape from REGN10987 to fitness, highlights the
potential of our model to predict effects of unseen mutations.

This point is further highlighted in Fig. 3B. For each mutation,
labeled as m, our model was systematically trained on all variants
that exclude mutation m and then used to predict fitness of all
existing variants carrying mutation m in combination with other
possible mutations. This methodology, implemented across all 14
mutations, yielded a strongR2 coefficient of over 0.8. The efficacy
of the model is demonstrated by its ability to consistently and
accurately predict the fitness of previously unobserved mutation
between Wuhan-Hu-1 and Omicron BA.1.

To further demonstrate the predictive capacity of our model,
we assessed its ability to forecast fitness of future variants.
The biophysical model was fitted on the dataset comprising all
registered variants prior to May 1, 2021, which included only
42 data points. This trained model was then deployed to predict
fitness of subsequent variants that emerged between May 1, 2021,
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A

C

F G

D E

B

Fig. 2. Biophysical model analysis. (A) Fit of the predictive model on the training set. Each dot represents a variant in the training dataset, plotted against the
fitness derived from population data on the x-axis and the predicted fitness by the model on the y-axis (R2 = 0.97). (B) Model’s performance on the testing set.
The model’s predictions align well with the fitness observed in population, as reflected by R2 = 0.94 suggesting that the model maintains a strong predictive
power on unseen data. (C–G) The dependence of fitness function on the logarithm of each dissociation constant. Existing variants are depicted as yellow regions
on the curve, and a histogram showing the distribution of the dissociation constants is provided beneath each plot. Red and blue dashed lines represent wt
and BA.1 respectively.
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and May 1, 2022, a period in which 843 unknown variants arose.
Importantly, our model exhibited a notable predictive power,
accurately predicting the leap in fitness induced by the Omicron
BA.1 variant and its neighboring variants, as depicted in Fig. 3C,
with an R2 value of 0.76. This underscores the model’s efficiency
in predicting fitness of unseen variants, even when trained on
relatively sparse data from the early stages of the pandemic.

Predicting Fitness for Variants without Experimental KD. More-
over, while our model has been trained on mutations spanning
from the Wuhan-Hu-1 to the Omicron BA.1, it is not restricted
to this specific spectrum. The model exhibits the capability to
capture the effects of mutations outside the scope of Wuhan to
Omicron, provided the relevant RBD’s biophysical properties are
available, either through experimental data or simulations.

To estimate the fitness of variants beyond the experimental
dataset of 215 sequences, it is essential first to determine the KD
values. We employed a supervised learning approach, utilizing
transformer embedding and neural networks (see Materials and
Methods for details), proven effective in estimating the binding
affinity of unseen RBD as demonstrated in Han et al. (21). It
is important to note that while the method we employed may
not represent the most state-of-the-art KD estimator available,
its application here aims to illustrate how our biophysical fitness
model can be synergistically integrated with either simulation or
ML-based KD estimators.

Our ML model is trained using 20,000 variants between
Wuhan and Omicron BA.1 and their corresponding KD values.
The remaining 12,565 variants were then utilized for validation.
On the validation set, we achieved R2 of 0.89, 0.98, 0.84,
0.75, and 0.79, respectively, for ACE2 and four antibodies, as
demonstrated in SI Appendix, Fig. S1.

Then the ML model was applied to all RBD sequences
observed in GISAID for which we could calculate population
infectivity but lacked KD values for the biophysical model. We
estimate these KD values using our ML model, then feed them
into the biophysical model and compared against actual fitness
metrics derived from population data as shown in Fig. 3D.
Importantly, this pipeline allows us to predict fitness for new
variants, based solely on their sequences. Despite being trained
on variants between Wuhan and Omicron BA.1, the model could
correctly predict the fitness of variants with combinations of
unseen mutations, achieving a Spearman correlation of 0.88. A
selection of these variants is identified and labeled in Fig. 3D for
reference. Please note that for Fig. 3D and subsequent panels E
and F, variants between Wuhan-Hu-1 and Omicron BA.1, for
which we already have experimental KD data, are excluded from
the analysis.

In Fig. 3E, we assess the model’s capacity to predict RBD
fitness for variants that emerged in 2020, 2021, and 2022. Our
model not only accurately predicted the fitness of various variants
but also consistently identified the top variants within each of
these time frames. However, in 2023, a noticeable divergence
emerged between the predicted and actual fitness, particularly
for the Omicron subvariants BA.2, BA.4, and BA.5. While
our model successfully recognized them as the most infectious
variants of the year, it was unable to discern the fitness differences
among these subvariants. We hypothesize that this limitation
arises because the evolution of these variants is not predominantly
driven by the four antibodies studied in this paper, given that
BA.1 had already demonstrated escape from three out of the
four antibodies. We then studied the model’s capacity to infer

the fitness trend during the pandemic in Fig. 3F. Although
our model’s predictions start to diverge from the actual fitness
metrics from early 2022 onward due to the underestimation of
the most-fit variant, it maintains alignment with the general trend
post-2022, showcasing its continued capability in accurately
predicting fitness for other variants that occurred during this
period.

Epistasis. After fitting our biophysical model to all existing vari-
ants, we extrapolated fitness across all 32,768 possible mutation
combinations which we have experimental KD data. Notably,
we observed a fitness threshold for the RBD, beyond which
additional mutations cease to enhance fitness (22). Essentially,
once the virus achieves a certain fitness level, characterized by high
immune escape and robust binding to the cell receptor, it becomes
increasingly challenging for further mutations to improve this
balance. As a result, fitness begins to plateau, as illustrated in Fig.
4A. This phenomenon, which was not predicted by the work
of Obermeyer et al. (19) or other nonepistatic models, can be
attributed to two key factors. First, as suggested by Moulana et al.
(9), mutations that enhance antibody escape tend to reduce the
virus’s affinity for ACE2 receptors. This indicates a trade-off in
viral evolution between immune evasion and the ability to infect
host cells, a factor inherently accounted for in KD measurements
and integrated into the biophysical model. Second, the logistic
function used in our biophysical model naturally leads to a plateau
in fitness.

To calculate the epistatic coefficients, we utilized a linear
model described inMaterials andMethods. We applied this model
to fitness values inferred from our biophysical model across all
32,768 possible combinations of mutations. The performance of
the model was evaluated (expressed as R2) for different orders
of epistasis on a withheld test dataset, constituting 10% of
the total data. A first-order model (comprising 16 coefficients)
produced an R2 value of 0.958, while a second-order model
(comprising 121 coefficients) achieved an R2 of 0.985. An F-test
was conducted, yielding a p-value of 10−16. This confirms
the robustness of the second-order model despite its increased
parameter count over the first-order epistatic model. The high
correlation values and satisfactory representation of the data
suggest that a second-order epistatic model sufficiently captures
the key dynamics, thereby alleviating the necessity for higher-
order epistatic models. Following the training of the second-order
model across the complete dataset to derive final coefficients, we
observed that most single mutations (reflected on the diagonal
of the matrix in Fig. 4C ) have a positive impact on fitness. An
interesting aspect of our findings is the behavior of the Y505H
mutation. While it displayed a negative first-order coefficient, its
interactions with other mutations are positive, which effectively
offsets the first-order negative impact.

Furthermore, we observed a unique dynamic with the Q493R
mutation. Alone, this mutation is beneficial, contributing to
the virus’s escape from the LY-CoV555 antibody. However, its
co-occurrence with other mutations reverses this benefit by
reducing the binding affinity to ACE2 (23). Particularly note-
worthy are adjacent mutations in the crystal structure such as
Q493R-E484A, Q493R-Q498R, and Q493R-K417N. These
proximal mutation pairs demonstrate significant deleterious
second-order effects, as illustrated in Fig. 4B. Intriguingly, the
evolutionary trajectory of Q493R seems responsive to these
complex interactions. A reversal of the Q493R mutation was
observed in subsequent lineages, including BA.4, BA.5, BA.2.75,
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A B

C D

E F

Fig. 3. Assessing predictive power of the model using experimental KD (A–C) and computed KD (D–F ). (A) Fitness prediction for variants carrying the G446S
mutation which was not included in the training set yields R2 = 0.92. (B) R2 derived from a model trained on variants excluding a specific mutation, then used to
predict fitness of variants exhibiting that mutation. (C) Predictions of fitness compared with actual fitness trend for variants between Wuhan-Hu-1 and Omicron
BA.1. Variants observed before May 2021 are used as training set for the model. The model uses experimental KD. (D) Predicted fitness from biophysical model
against actual fitness derived from population data. The model uses KD acquired from ML and is fit on Wuhan-Omicron set. Selected variants are highlighted.
(E) Predicted fitness compared with actual fitness for variants observed in 2020, 2021, and 2022. (F ) Predictions of fitness using ML derived KD over three-month
rolling windows, compared with the actual fitness trends for variants between 2021 and 2023.
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A

C

B

Fig. 4. Epistasis analysis. (A) Predicted fitness values with the nonepistatic model of Obermeyer et al. and with our epistatic biophysical model plotted against
the genome’s mutation count, for all mutation combinations with mutation T478K. We define “Max Fitness” as the maximum fitness prediction from our
biophysical model. Max Fitness curve begins to plateau with a higher mutation count, demonstrating a diminishing returns effect in epistatic. (B) Pairwise
(second order) interaction coefficients against the spatial distances between the corresponding residues, with mutations colored in accordance with the
absolute value of their pairwise coefficient. (C) Coefficients of epistasis: Diagonal coefficients denote first-order interactions, whereas off-diagonal coefficients
represent second-order interactions. Coefficients smaller than 0.01 have been masked for clarity.

BQ.1, and XBB. This reversal suggests an evolution dynamics
driven by the trade-offs between immune escape and ACE2
binding.

Overall, these findings highlight the complex dynamics of
viral evolution, where multiple mutations interact nonlinearly
to enhance or reduce viral fitness.
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Discussion

Although the complexity of fitness landscapes is undeniable,
recent research indicates that in certain biologically and clinically
significant systems, such as evolution of bacterial resistance
against antibiotic (24), evolution of viral resistance against an-
tiviral treatments (11, 25), as well as norovirus evolution against
a neutralizing antibody (12), these fitness landscapes can be
systematically and quantitatively delineated. Our research builds
upon these findings and reveals that the fitness landscape of the
SARS-CoV-2 RBD, undergoing evolution against neutralizing
antibodies, can be systematically described through its biophys-
ical properties. In our study, we found the strength of binding
to the neutralizing antibody, as well as to ACE2, plays crucial
roles in determining RBD fitness. Importantly, the significance
of these biophysical parameters is not confined to SARS-CoV-2
alone. Similar traits, namely antibody binding affinity and protein
folding stability, have been crucial in influencing the evolution
of influenza viruses (25–27). This observation suggests that our
model may have broader applications, potentially extending to
other viruses beyond SARS-CoV-2.

To forecast the fitness of emerging novel variants with our
model, acquiring the dissociation constants for the corresponding
mutated RBD is imperative. While experimental data sets
the gold standard, obtaining them early in a pandemic may
pose challenges. Fortunately, computational methodologies have
demonstrated efficacy in predicting dissociation constants for
unobserved mutations using molecular dynamics (MD) and ML.
For instance, Lacam et al. (28) achieved exceptional accuracy
by employing a framework that integrates MD and potential-
of-mean-force calculations. Their study accurately determined
the binding free energy of the RBD for four prevalent variants
and the wild type, when complexed with ACE2 or antibodies
S2E12 and H11-D4. In parallel, Sergeeva et al. (29) offered
an effective strategy to determine the impact of interfacial
mutations on the binding affinities between RBD and ACE2,
using free energy perturbation. Williams et al. (30) constructed a
multilayer neural network, using biophysical parameters as inputs
to predict binding affinities of SARS-CoV-2 antibodies with
various VoCs. Similarly, Chen et al. developed the NN-MM-
GBSA model (31) using MD and neural network to predict
binding affinity between SARS-CoV-2 spike RBD variants and
ACE2, reaching a correlation coefficient of 0.73 on prediction of
dissociation for single variants in the work Starr et al. (7).

In this study, for RBD variants without experimental measured
KD, we estimated binding affinities using a computationally
efficient alternative by employing a neural network that takes
in transformer embedding for sequences and outputs KD. In
this way, we could predict mutational effects not only for
combinations of mutations outside of the experimental dataset
but also for completely unseen mutations. By incorporating these
predicted dissociation constants into our biophysical model, we
demonstrate that this streamlined computational approach yields
accurate predictions for VoCs both at the early and later stages
of the pandemic.

During the early stages of a pandemic, data on viral fitness
or infectivity is typically limited. Unlike KD measurements,
which can be derived from wet lab experiments or simulations,
comprehensive fitness data are usually only accessible after a
variant has extensively spread and been subjected to population-
level sequencing. Therefore, the ability of our model to train
and predict effectively with minimal data points is particularly
valuable in the context of pandemic preparedness. Considering
the RBD’s susceptibility to mutations, our model has the

potential to be a powerful tool in understanding and predicting
the fitness of emerging variants.

Despite our biophysical model being trained on nonepistatic
population data from Obermeyer et al. (19), the model allows
us to generate an epistatic map from genotype to fitness using
kD. In our model, we observe a tendency for fitness to plateau
in the face of the increasing number of mutations relative to the
wild type. This phenomenon of diminishing returns, manifested
as a fitness plateau, has been extensively studied in the existing
literature (22, 32–35).

Our results also indicate that epistasis constrains evolution.
While many of the mutations we investigated are beneficial,
specific combinations of mutations could be deleterious. Some
mutations require the concurrent occurrence of stabilizing
mutations to counterbalance their adverse consequences. This
observation is consistent with findings of Gong et al. (25) and
Rodrigues et al. (24) underscoring the critical role of stabilizing
mutations in fixation of subsequent destabilizing mutations that
could hold adaptive value.

Our results emphasize the importance of accounting for
the interactive effects of multiple mutations in viral evolution
modeling and prediction. It is particularly noteworthy that our
model could explain the reversal of Q493R from a viral fitness
perspective. Furthermore, in our model, second-order pairwise
effects between mutations tend to weaken as their separation in
the crystal structure increases. These observations demonstrate
that our model effectively captures the essential aspects of viral
fitness, including the epistatic effects that drive viral evolution.

A fundamental assumption of our model is that evolution of
the SARS-CoV-2 RBD is predominantly driven by its capacity
to bind the ACE2 receptor and evade antibodies. Our model,
which is based on this assumption, demonstrates the ability
to predict the fitness effect of all mutations in RBD, except
for T478K. T478K is an interesting mutation as shown by
Moulana et al. (8, 9) that it had a negligible effect on dissociation
constants, despite its strong contribution to variant infectivity.
The exact reason for T478K’s high fitness contribution, despite
no apparent change in RBD’s biophysical parameters, remains
unclear. A prevailing hypothesis is its frequent co-occurrence
with the D614G mutation (36). D614G, located on the spike
protein but outside of the RBD, has been shown to enhance viral
replication and infectivity (37, 38). Our model, focusing on the
RBD, does not account for effects of mutations like D614G on
the spike protein. This limitation leads to our observation that
the RBD containing T478K consistently shows increased fitness,
regardless of the mutational background in RBD. Consequently,
we segregated the training data based on the presence of the
T478K mutation. This approach helps us account for the fitness
increase associated with T478K, despite our model’s focus on the
RBD.

Studies have established that RBD could adopt either up
or down conformations on the spike protein (14–17). Despite
this, many investigations have measured binding affinities using
isolated RBDs, neglecting the complex dynamics between the
spike protein and RBD. In the main text and SI Appendix,
we demonstrated that incorporating both conformational states
into our model achieves a logistic function analogous to that
derived from considering the RBD solely in its up state, with
effective molecular concentration renormalized as C̃ = C

k+1

and C̃i = (1+e−��i )Ci
k+1 . This provides a theoretical foundation

for fitting the logistic regression with dissociation constants
measured on isolated RBDs, given two assumptions. One of
the assumptions is that k is roughly a constant across different
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variants. This is experimentally verified as Omicron BA.1 Spike
preferentially adopts the one-RBD-up conformation (39) similar
to the wild type (14–16). However, we acknowledge that this
assumption may become less reliable as mutations accumulate.
For instance, Cryo-EM studies indicate a shift toward more 3-
RBD-down configurations in the Omicron BA.2 variant (40),
potentially explaining the observed underestimation of BA.2’s
fitness in our model. Another assumption is that e−��i is also a
constant across variants. In the context of REGN10987 and S309
antibodies, which bind outside of the receptor-binding motif, we
estimate e−��̄3 ≈ e−��̄4 ≈ 1. For LY-CoV016 and LY-CoV555,
whose binding sites overlap with the receptor-binding motif
0 < e−��̄1 < 1 and 0 < e−��̄2 < 1.

On the other hand, extrapolating our fitness predictions
beyond RBD to encompass the entire viral sequence, presents
a more formidable challenge. Our model’s predictive power on
RBD fitness comes from the fact that binding affinity to ACE2
and antibodies are major evolutionary forces that drive RBD’s
evolution. It is likely that mutations outside the RBD will have
functional and structural effects that extend beyond alterations
to dissociation constants with cell receptors and antibodies,
complicating the predictions.

Furthermore, our model currently considers antibody bind-
ing to ACE2 and four monoclonal antibodies: LY-CoV016,
LY-CoV555, REGN10987, and S309, an oversimplification
given the complexity of human immune responses. While our
model already exhibits accurate predictions and could easily be
extended to other antibodies if data are available, the inclusion
of additional factors such as other antibodies, vaccination effects,
the replicative capacity within the infected cell (41), transmission
dynamics (42), and drug resistance (43) could potentially
enhance its predictive power and realism.

Materials and Methods

RBD Fitness Data Analysis. We acquired the fitness ratio of each RBD
compared to the wild type from the work of Obermeyer et al. (19). In their study,
fitness label is obtained by modeling the relative growth rate of SARS-CoV-2
lineages using a hierarchical Bayesian regression model. The model combines
individual mutations and clusters genetically similar genomes to estimate the
incremental effect of amino acid changes on growth rate within each lineage,
which enables the model to share statistical strength among similar lineages.
Specifically, the proportion of lineages is modeled as a multinomial distribution
whose probability parameter is a multivariate logistic growth function softmax
(� + tb/�). For each lineage, the slopes b are linearly regressed against
the presence of each possible amino acid substitution Xm ∈ {O, 1} as
b =

∑
m bmXm. These linear coefficients bm can be directly interpreted as

the effect of a mutationm on a lineage’s fitness. This model assumes each single
point mutation independently linearly contributes to change in fitness. Authors
reported that fitting a similar model of both single and pair mutations leads to
no pairwise mutations stronger than the top 100 single mutations.

This enabled us to estimate fitness Fmut of each existing RBD mutant,
compared to wild type. Using b = log( FmutFwild

), we get

Fmut
Fwild

= exp

 ∑
m ∈ RBD

bmXm

 .

RBD Binding Affinity. We acquired the binding affinity data from the work
of Moulana et al. (8, 9) In their study, they systematically examined the
interactions between all possible combinations of 15 RBD mutations (totaling
32,768 genotypes) and ACE2, as well as four monoclonal antibodies (LY-CoV016,
LY-CoV555, REGN10987, and S309) via Tite-seq measurement. In situations
where binding affinities in their dataset were too low to measure accurately,

we have chosen to substitute these with a fixed value of 5. We stress that this
choice of value is not expected to influence our study’s outcomes. As indicated
in Fig. 2 C–G, the antibody escape largely resides in the upper plateau region
of the fitness curve; thus, this preset value for variants with immune escape to
antibodies does not have a substantial impact on the logistic regression results.
Furthermore, we eliminated approximately 100 genotypes from the analysis
that did not have measured ACE2 binding affinity.

Effect of Mutations on RBD Stability. In the presented results, we excluded
the unfolded state from the model, on the assumption that this variable shows
minimal variation across different variants and hence, would not significantly
influence fitness. To verify this assumption, we employed DDGUN, an untrained,
high-throughput tool (44), to compute ΔΔGfold , the variance in folding free
energy difference, for mutants relative to the wild-type: The maximum variation
was under 2 kcal/mol. Recalling that ΔGfold ≈ −10 kcal/mol (45), we deduce
that most mutations do not significantly destabilize RBD.

This could be indicative of the universally efficient folding of RBDs seen in
nature. The selection pressure acting on the RBD primarily focuses on binding
to ACE2 and immune evasion, and therefore the mutations are predominantly
on the protein surface and do not significantly affect the protein’s stability.

Filtering RBD Sequences from GISAID. All 15,371,428 spike sequences on
GISAID (10) as of April 14, 2023 were downloaded and aligned, following the
approach in the work of Starr et al. (46). Sequences from nonhuman origins
and with lengths outside [1260, 1276] were removed. They were then aligned
via mafft (47) and sequences containing unicode errors, gap, or ambiguous
characters were removed. Overall, we retained 11,976,984 submissions
represented by 25,725 unique RBD sequences. RBD amino acid mutations
were enumerated compared to the reference Wuhan-Hu-1 SARS-CoV-2 RBD
sequence (Genbank MN908947, residues N331-T531).

We then remove all RBD sequences that do not match any of the possible
intermediates between Wuhan Hu-1 and Omicron BA.1. To do this, we allow all
possible combinations of 15 mutations (G339D, S371L, S373P, S375F, K417N,
N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, and
Y505H) between Wuhan and Omicron BA.1, which lead to 215 = 32, 768
possible combinations. We calculated the number of occurrences of each RBD
sequence as well as the time of its first occurrence, which we approximated by
taking 5% quantile of time data for each RBD sequence. From this analysis, we
obtained 1,121 unique observed RBDs. These RBDs correspond to 2.5 million
sequences out of the 12 million sequences we initially screened from the GISAID
database.

Fitting the Model with Logistic Regression. For the purpose of logistic
regression analysis, we utilized the intersecting data obtained from Materials
and Methods RBD Fitness and RBD Binding Affinity. This accumulated dataset
comprises 1,118 unique RBDs observed in the GISAID database (48), for which
the KD values have been experimentally determined. We further partitioned
this data based on the presence or absence of the T478K mutation within the
sequence, resulting in two distinct subsets (SI Appendix and Discussion).

The ratio between system temperatureTs (corresponding to body temperature
of the host) and experimental temperature Te [corresponding to the temperature
of experiments conducted in work from Moulana et al. (8, 9), leading to ΔG =
RTeln(KD)] was treated as a hyperparameter T (simply referred as “energy scale”),
which is a parameter whose value is chosen before the fit is done.

We calculated unknown parameters �, C̃, and C̃i by fitting:

F = �
C̃e− ln(KDA)/T + 1

C̃e− ln(KDA)/T +
∑

i C̃ie
− ln(KDai )/T + 1

, [3]

where energy scale T is fixed to 1.6. We emphasize that the hyperparameter
can be chosen with knowledge of the training set alone (and thus does not
invalidate prediction capabilities of the model) and that the model behavior is
only slightly affected by changes in this hyperparameter (see SI Appendix for
model performance at different energy scales).
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Model fitting was performed with nonlinear least square regression
(scipy.optimize package) on a randomly selected training set. The model is
then evaluated on the remaining testing set to prove absence of overfitting.
Additionally, to mitigate the effects of randomness, we implemented 10-fold
cross-validation wherever feasible.

Fitness Prediction Using ML Estimated KD. Considering the potential
unavailability of experimental measures for dissociation constants early in a
pandemic, we advocate for the application of our methodology to KD estimates
derived from a computationally inexpensive deep learning pipeline. Notably,
Hie et al. successfully predicted viral escape using a machine learning technique
designed for natural language processing (49). Similarly, Han et al. introduced
an online platform based on deep learning models, incorporating transformers,
for rapid prediction of binding affinity between RBD mutants and ACE2 (50).

Building on these developments, our study showcases a framework that
combines a biophysical model with a KD predictor utilizing protein sequence
embedding and a neural network. This integrated system efficiently predicts
dissociation constants for emerging variants, and the results are directly fed into
the biophysical model. This method enables prompt and effective prediction of
viral evolution in response to novel mutations.

ESM-1v (51) is a Transformer-based language model specifically trained on a
diverse dataset of 98M protein sequences. This pretrained model inputs a given
protein sequence and outputs a vector representation, or an “embedding,” of
that sequence. This embedding consists of the evolutionary information of the
protein sequence, which is pivotal in enabling the machine learning model to
predict the effects of various combinations of unseen mutations as demonstrated
in these papers (21, 49, 51).

To elaborate the embedding mathematically, consider a protein sequence

of length L, we describe it as a sequence of tokens x def
= (x1, . . . , xL). For

the RBD, we have L = 201. During the forward pass of ESM-1v, we obtain the
hidden representations from the final layer, denoted as (h1, . . . , hL), with each
hi being a vector in R1080. To generate a comprehensive representation of the
entire sequence, we apply mean pooling to these vectors, resulting in a single
sequence representation z = fesm(x) = 1

L
∑L

i=1 hi.
After acquiring the embedding, we trained a neural network that takes the

embedding as input and output the variant binding affinity with ACE2 and four
antibodies. This network was trained using KD data from 20,000 variants and
subsequently validated on a separate set comprising the remaining 12,565
variants.

After training, the neural network was deployed to estimate the KD for
existing variants with known population fitness, encompassing a total of 5,460
variants. Excluding the variants between Wuhan and Omicron BA.1 (for which
we already have experimental binding affinities), we focused on evaluating the
predictive power of the remaining 3,334 variants. These estimated KD values
were subsequently integrated into the biophysical model, as described in Fitting
the Model with Logistic Regression.

Epistasis Analysis. Epistasis describes how mutation interactions can affect
fitness F. If there is no epistasis then fitness can be described as linear

combinations of the presence of each mutation Xm ∈ {0, 1}, leading to a
first-order epistatic model:

F =
∑
i

ciXi. [4]

If we consider pairwise epistatic interactions between mutated sites, we get
a second-order epistatic model:

F =
∑
i

ciXi +
∑
i<j

cijXiXj, [5]

ci are considered as “first-order” epistatic coefficient, while ci,j are “second-order”
epistatic coefficients as they illustrate the nonlinear epistatic interaction between
mutated sites i and j.

To make sure the linear model does not overfit and can generalize on
unseen data, we implemented a 10-fold cross-validation strategy (dataset split:
90%/10%) and identified a linear model involving first- and second-order
coefficients as described in Eq. 5 gives a better representation of data than
a first-order model (R2 = 0.958 vs. R2 = 0.985 on test set). An F-test was
conducted to assess the statistical significance of the improvement in R2 when
moving from the 16-parameter first-order model to the 121-parameter second-
order model. Our analysis resulted in an F-statistic of 540, with an extremely
low P-value of 10−16. The very low P-value rejects the null hypothesis that
the additional parameters in the second-order model do not contribute to an
improved fit.

To analyze the relationship between second-order epistatic coefficients ci,j
and the distance between mutated sites, we calculated the latter as the Euclidean
distance between the average position (computed as the mean of positions of
all nonhydrogen atoms in the amino acid) of each mutated site.

Data, Materials, and Software Availability. The code for our analyses is avail-
able on GitHub at https://github.com/Dianzhuo-Wang/COVID19-Biophysical-
Model (52). The fitness data used in this study are available in ref. 19 at
https://github.com/broadinstitute/pyro-cov (53). The binding affinity data used
in this work is described in refs. 8 and 9 and can be accessed at https://github.
com/desai-lab/compensatory_epistasis_omicron (54) and https://github.com/
desai-lab/omicron_ab_landscape (55).

ACKNOWLEDGMENTS. This work is supported by NIH R35GM139571 (to E.I.S.)
V.M. acknowledges support from NIGMS T32GM144273, a Hertz Foundation
Fellowship, and a Paul & Daisy Soros Fellowship. The content is solely the
responsibility of the authors and does not necessarily represent the official views
of the National Institute of General Medical Sciences or the National Institutes
of Health. We gratefully acknowledge all data contributors, i.e., the Authors and
their Originating laboratories responsible for obtaining the specimens, and their
submitting laboratories for generating the genetic sequence and metadata and
sharing via the GISAID Initiative, on which this research is based. We would like
to thank Vaibhav Upadhyay, Krishna Mallela, Zechen Zhang, and Junlang Liu
for useful discussions.

1. X. Deng et al., Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell
184, 3426–3437.e8 (2021).

2. K. Leung, M. H. Shum, G. M. Leung, T. T. Lam, J. T. Wu, Early transmissibility assessment of
the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020.
Eurosurveillance 26, 2002106 (2021).

3. S. Cele et al., Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature
593, 142–146 (2021).

4. V. Upadhyay, A. Lucas, S. Panja, R. Miyauchi, K. M. Mallela, Receptor binding, immune escape, and
protein stability direct the natural selection of SARS-CoV-2 variants. J. Biol. Chem. 297, 101208
(2021).

5. M. Letko, A. Marzi, V. Munster, Functional assessment of cell entry and receptor usage for
SARS-CoV-2 and other lineage B betacoronaviruses. Nat. Microbiol. 5, 562–569 (2020).

6. B. Ju et al., Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584, 115–119
(2020).

7. T. N. Starr et al., Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals
constraints on folding and ACE2 binding. Cell 182, 1295–1310.e20 (2020).

8. A. Moulana et al., Compensatory epistasis maintains ACE2 affinity in SARS-CoV-2 omicron BA.1.
Nat. Commun. 13, 7011 (2022).

9. A. Moulana et al., The landscape of antibody binding affinity in SARS-CoV-2 omicron BA.1 evolution.
eLife 12, e83442 (2023).

10. S. Elbe, G. Buckland-Merrett, Data, disease and diplomacy: GISAID’s innovative contribution to
global health: Data, disease and diplomacy. Glob. Chall. 1, 33–46 (2017).

11. N. Chéron, A. W. R. Serohijos, J. M. Choi, E. I. Shakhnovich, Evolutionary dynamics of viral escape
under antibodies stress: A biophysical model. Protein Sci. 25, 1332–1340 (2016).

12. A. Rotem et al., Evolution on the biophysical fitness landscape of an RNA virus. Mol. Biol. Evol. 35,
2390–2400 (2018).

13. F. Pucci, M. Rooman, Prediction and evolution of the molecular fitness of SARS-CoV-2 variants:
Introducing SpikePro. Viruses 13, 935 (2021).

14. R. Yan et al., Structural basis for the different states of the spike protein of SARS-CoV-2 in complex
with ACE2. Cell Res. 31, 717–719 (2021).

15. A. C. Walls et al., Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell
181, 281–292.e6 (2020).

16. D. Wrapp et al., Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science
367, 1260–1263 (2020).

17. Y. Chen et al., Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses. Nat.
Rev. Immunol. 23, 189–199 (2023).

10 of 11 https://doi.org/10.1073/pnas.2314518121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
24

.2
44

.8
8.

76
 o

n 
O

ct
ob

er
 6

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
12

4.
24

4.
88

.7
6.

https://github.com/Dianzhuo-Wang/COVID19-Biophysical-Model
https://github.com/Dianzhuo-Wang/COVID19-Biophysical-Model
https://github.com/broadinstitute/pyro-cov
https://github.com/desai-lab/compensatory_epistasis_omicron
https://github.com/desai-lab/compensatory_epistasis_omicron
https://github.com/desai-lab/omicron_ab_landscape
https://github.com/desai-lab/omicron_ab_landscape


18. C. C. Wang et al., Airborne transmission of respiratory viruses. Science 373, eabd9149 (2021).
19. F. Obermeyer et al., Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations associated

with fitness. Science 376, 1327–1332 (2022).
20. K. A. de Jong, H. Rosing, M. Vermunt, A. D. Huitema, J. H. Beijnen, Quantification of

anti-SARS-CoV-2 antibodies in human serum with LC-QTOF-MS. J. Pharm. Biomed. Anal. 205,
114319 (2021).

21. W. Han et al., Predicting the antigenic evolution of SARS-COV-2 with deep learning. Nat. Commun.
14, 3478 (2023).

22. C. S. Wylie, E. I. Shakhnovich, A biophysical protein folding model accounts for most mutational
fitness effects in viruses. Proc. Natl. Acad. Sci. U.S.A. 108, 9916–9921 (2011).

23. Q. Wang et al., Antibody evasion by SARS-CoV-2 omicron subvariants BA.2.12.1, BA.4 and BA.5.
Nature 608, 603–608 (2022).

24. J. V. Rodrigues et al., Biophysical principles predict fitness landscapes of drug resistance. Proc. Natl.
Acad. Sci. U.S.A. 113, E1470–E1478 (2016).

25. L. I. Gong, M. A. Suchard, J. D. Bloom, Stability-mediated epistasis constrains the evolution of an
influenza protein. eLife 2, e00631 (2013).

26. J. M. Fonville et al., Antibody landscapes after influenza virus infection or vaccination. Science 346,
996–1000 (2014).

27. E. Y. Klein et al., Stability of the influenza virus hemagglutinin protein correlates with evolutionary
dynamics. mSphere 3, e00554-17 (2018).

28. E. G. Coderc, M. de Lacam, H. Chen Blazhynska, J. C. Gumbart, C. Chipot, When the dust has
settled: Calculation of binding affinities from first principles for SARS-CoV-2 variants with
quantitative accuracy. J. Chem. Theory Comput. 18, 5890–5900 (2022).

29. A. P. Sergeeva et al., Free energy perturbation calculations of mutation effects on SARS-CoV-2
RBD::ACE2 binding affinity. J. Mol. Biol. 435, 168187 (2023).

30. A. H. Williams, C. G. Zhan, Fast prediction of binding affinities of SARS-CoV-2 spike protein and its
mutants with antibodies through intermolecular interaction modeling-based machine learning.
J. Phys. Chem. B 126, 5194–5206 (2022).

31. C. Chen et al., Computational prediction of the effect of amino acid changes on the binding affinity
between SARS-CoV-2 spike RBD and human ACE2. Proc. Natl. Acad. Sci. U.S.A. 118, e2106480118
(2021).

32. X. Wei, J. Zhang, Patterns and mechanisms of diminishing returns from beneficial mutations. Mol.
Biol. Evol. 36, 1008–1021 (2019).

33. H. H. Chou, H. C. Chiu, N. F. Delaney, D. Segrè, C. J. Marx, Diminishing returns epistasis among
beneficial mutations decelerates adaptation. Science 332, 1190–1192 (2011).

34. S. Kryazhimskiy, D. P. Rice, E. R. Jerison, M. M. Desai, Global epistasis makes adaptation
predictable despite sequence-level stochasticity. Science 344, 1519–1522 (2014).

35. A. W. R. Serohijos, E. I. Shakhnovich, Contribution of selection for protein folding stability in
shaping the patterns of polymorphisms in coding regions. Mol. Biol. Evol. 31, 165–176 (2014).

36. S. Di Giacomo, D. Mercatelli, A. Rakhimov, F. M. Giorgi, Preliminary report on severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) spike mutation T478K. J. Med. Virol. 93,
5638–5643 (2021).

37. J. A. Plante et al., Spike mutation D614G alters SARS-CoV-2 fitness. Nature 592, 116–121
(2021).

38. Y. J. Hou et al., SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission
in vivo. Science 370, 1464–1468 (2020).

39. Z. Zhao et al., Omicron SARS-CoV-2 mutations stabilize spike up-RBD conformation and lead to a
non-RBM-binding monoclonal antibody escape. Nat. Commun. 13, 4958 (2022).

40. V. Stalls et al., Cryo-EM structures of SARS-CoV-2 omicron BA.2 spike. Cell Rep. 39, 111009
(2022).

41. F. Touret et al., Replicative fitness of a SARS-CoV-2 20I/501Y.V1 variant from lineage B.1.1.7 in
human reconstituted bronchial epithelium. mBio 12, e0085021 (2021).

42. R. Burioni, E. J. Topol, Has SARS-CoV-2 reached peak fitness? Nat. Med. 27, 1323–1324
(2021).

43. N. Matange, S. Hegde, S. Bodkhe, Adaptation through lifestyle switching sculpts the fitness
landscape of evolving populations: Implications for the selection of drug-resistant bacteria at
low drug pressures. Genetics 211, 1029–1044 (2019).

44. L. Montanucci, E. Capriotti, Y. Frank, N. Ben-Tal, P. Fariselli, DDGun: An untrained method for
the prediction of protein stability changes upon single and multiple point variations. BMC
Bioinformatics 20, 335 (2019).

45. N. Tokuriki, F. Stricher, J. Schymkowitz, L. Serrano, D. S. Tawfik, The stability effects of
protein mutations appear to be universally distributed. J. Mol. Biol. 369, 1318–1332
(2007).

46. T. N. Starr et al., Prospective mapping of viral mutations that escape antibodies used to treat
COVID-19. Science 371, 850–854 (2021).

47. K. Katoh, D. M. Standley, MAFFT multiple sequence alignment software version 7: Improvements in
performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

48. S. Elbe, G. Buckland-Merrett, Data, disease and diplomacy: GISAID’s innovative contribution to
global health. Glob. Chall. 1, 33–46 (2017).

49. B. Hie, E. D. Zhong, B. Berger, B. Bryson, Learning the language of viral evolution and escape.
Science 371, 284–288 (2021).

50. J. Han et al., D3AI-Spike: A deep learning platform for predicting binding affinity between
SARS-CoV-2 spike receptor binding domain with multiple amino acid mutations and human
angiotensin-converting enzyme 2. Comput. Biol. Med. 151, 106212 (2022).

51. A. Rives et al., Biological structure and function emerge from scaling unsupervised learning to 250
million protein sequences. Proc. Natl. Acad. Sci. U.S.A. 118, e2016239118 (2019).

52. D. Wang et al., COVID-19 Biophysical Model. GitHub. https://github.com/Dianzhuo-Wang/
COVID19-Biophysical-Model. Deposited 16 May 2024.

53. F. Obermeyer et al., Pyro-Cov. GitHub. https://github.com/broadinstitute/pyro-cov. Accessed 1 May
2023.

54. A. Moulana et al., Compensatory Epistasis Omicron. GitHub. https://github.com/desai-
lab/compensatory_epistasis_omicron. Accessed 1 May 2023.

55. A. Moulana et al., Omicron Antibody Landscape. GitHub. https://github.com/desai- lab/omicron_
ab_landscape. Accessed 1 May 2023.

PNAS 2024 Vol. 121 No. 23 e2314518121 https://doi.org/10.1073/pnas.2314518121 11 of 11

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
24

.2
44

.8
8.

76
 o

n 
O

ct
ob

er
 6

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
12

4.
24

4.
88

.7
6.

https://github.com/Dianzhuo-Wang/COVID19-Biophysical-Model
https://github.com/Dianzhuo-Wang/COVID19-Biophysical-Model
https://github.com/broadinstitute/pyro-cov
https://github.com/desai-lab/compensatory_epistasis_omicron
https://github.com/desai-lab/compensatory_epistasis_omicron
https://github.com/desai-lab/omicron_ab_landscape
https://github.com/desai-lab/omicron_ab_landscape

	The Model
	Fit of Biophysical Model to Fitness Obtained from Population Data
	Predicting Fitness for Variants between wt and BA.1
	Predicting Fitness for Variants without Experimental KD
	Epistasis
	Materials and Methods
	RBD Fitness Data Analysis
	RBD Binding Affinity
	Effect of Mutations on RBD Stability
	Filtering RBD Sequences from GISAID
	Fitting the Model with Logistic Regression
	Fitness Prediction Using ML Estimated KD
	Epistasis Analysis



