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Abstract 

Chronic viral infections are ubiquitous in humans, with individuals harboring multiple latent 
viruses that can reactivate during acute illnesses. Recent studies have suggested that SARS-
CoV-2 infection can lead to reactivation of latent viruses such as Epstein-Barr Virus (EBV) and 
cytomegalovirus (CMV), yet, the extent and impact of viral reactivation in COVID-19 and its 
effect on the host immune system remain incompletely understood.  
 
Here we present a comprehensive multi-omic analysis of viral reactivation of all known 
chronically infecting viruses in 1,154 hospitalized COVID-19 patients, from the 
Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study, who were followed 
prospectively for twelve months. We reveal significant reactivation of Herpesviridae, 
Enteroviridae, and Anelloviridae families during acute stage of COVID-19 (0-40 days post-
hospitalization), each exhibiting distinct temporal dynamics. We also show that viral reactivation 
correlated with COVID-19 severity, demographic characteristics, and clinical outcomes, 
including mortality. Integration of cytokine profiling, cellular immunophenotyping, metabolomics, 
transcriptomics, and proteomics demonstrated virus-specific host responses, including elevated 
pro-inflammatory cytokines (e.g. IL-6, CXCL10, and TNF), increased activated CD4+ and CD8+ 
T-cells, and upregulation of cellular replication genes, independent of COVID-19 severity and 
SARS-CoV-2 viral load. Notably, persistent Anelloviridae reactivation during convalescence (≥3 
months post-hospitalization) was associated with Post-Acute Sequelae of COVID-19 (PASC) 
symptoms, particularly physical function and fatigue.  
 
Our findings highlight a remarkable prevalence and potential impact of chronic viral reactivation 
on host responses and clinical outcomes during acute COVID-19 and long term PASC 
sequelae. Our data provide novel immune, transcriptomic, and metabolomic biomarkers of viral 
reactivation that may inform novel approaches to prognosticate, prevent, or treat acute COVID-
19 and PASC. 
 
Keywords: COVID-19, PASC, Long-COVID, Chronic Virus, Herpesviruses, Anellovirdae, 
Epstein-Barr Virus, Cytomegalovirus, Simplexvirus 
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Introduction 
Viruses employ a variety of strategies to enhance their persistence and dissemination, including 
establishing chronic infection1–3. This strategy is exemplified by several human-infecting viruses, 
particularly those belonging to the Herpesviridae and Anelloviridae families, with these viruses 
establishing lifelong infections in a significant portion of the human population4–6. Although 
primary infection typically remains asymptomatic in immunocompetent individuals, some chronic 
viral infections contribute to the development of autoimmune disorders and cancers, among 
other adverse health outcomes2,7–13. These viruses typically remain dormant, but can reactivate 
during periods of stress, sleep deprivation, surgery, hormonal imbalances, or in the setting of 
critical illness14–17. The full range of immunological consequences stemming from these chronic 
viral reactivations remains largely unknown.  
 
Since its emergence in 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2) has resulted in over 774 million cases of coronavirus disease 2019 (COVID-19) and 7 million 
deaths18,19. Due to the physiological stress introduced by SARS-CoV-2 infection, underlying 
chronic viral infections may reactivate and potentially contribute to the immunological 
consequences of COVID-19. For example, reactivation of Herpesviridae, including EBV 
(Epstein-Barr Virus/Human Herpesvirus 4 (HHV4)), CMV (Cytomegalovirus/Human Herpesvirus 
5 (HHV5)), Human Herpesvirus 6 (HHV6), and Human Herpesvirus 8 (HHV8), is associated with 
worse acute clinical outcomes in patients with COVID-1920–24. Reactivation of CMV and EBV, in 
particular, has been linked to more severe outcomes, including increased mortality20,25. 
Additionally, patients with “Long COVID”, also known as Post-Acute Sequelae of COVID-19 
(PASC), develop elevated EBV antibody titers, raising the possibility that reactivation of these 
viruses may contribute to PASC22,26.   
   
Many of the foundational COVID-19 viral reactivation studies have been limited by small 
sample sizes, have focused on only a subset of Herpesviridae, or have relied solely on 
evaluating antibody responses to assess viral reactivation20,22–24,26–30, as opposed to 
measuring transcripts of actively replicating virus. As such, important gaps remain in our 
understanding of the dynamics and biology of chronic viral reactivation during acute COVID-
19, and their role in PASC.  
 
To address the knowledge gap in viral reactivation in COVID-19, we leveraged samples and 
data from a longitudinal prospective observational study of 1,154 patients hospitalized for 
COVID-19 enrolled in the Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC), 
with patients evaluated during acute hospitalization and for 12 months post hospital discharge. 
We carried out longitudinal, multi-omic analyses of nasal swabs, peripheral blood mononuclear 
cells (PBMCs), and endotracheal aspirates and found significant reactivation of chronic viruses, 
particularly from the Herpesviridae and Anelloviridae families, associated with acute COVID-19 
severity. By integrating host and viral transcriptomics, cytokine profiling, cellular 
immunophenotyping, metabolomics, and proteomics, we observed distinct viral reactivation 
dynamics, and striking associations between viral reactivation, clinical outcomes, immunologic 
features, and patient demographics, both during acute COVID-19 and PASC. Our results 
provide novel insights into the endogenous virological landscape of COVID-19 patients, 
highlighting the complex interplay between SARS-CoV-2 infection, latent viral reactivation, host 
immune responses, and clinical outcomes. 
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Results 
IMPACC Cohort 

The IMPACC consortium enrolled 1,154 patients hospitalized for COVID-19 across 20 US 
hospitals between May 2020 and March 2021 (Figure 1A). All participants were COVID-19 
vaccine-naive at the time of enrollment. To assess COVID-19 severity, participants were 
assigned to one of five trajectory groups (TG) using latent class mixed modeling of respiratory 
status over the first 28 days31. Groups were classified as mild (TG1), moderate (TG2), severe 
(TG3), critical (TG4), or fatal within 28 days (TG5). From each participant, bulk RNA sequencing 
was performed on PBMCs, nasal swabs, and for mechanically ventilated patients, endotracheal 
aspirates (EA), at up to ten visits during one-year post-hospital admission (Figure 1B). In 
addition, we assessed whole blood immune cell populations by mass cytometry by time of flight 
(CyTOF), serum anti-EBV and anti-CMV antibody titers, serum cytokine levels by proximity 
extension assay (PEA), and the plasma proteome and metabolome by mass spectrometry at 
participant visits. 

RNA-sequencing Identifies Transcripts from the Human Virome 

From RNA-seq data, we identified viral RNA transcripts in nasal, EA and PBMC samples and 
found a diverse number of human infecting viruses beyond SARS-CoV-2 including EBV, CMV, 
HHV6, HSV1, HSV2, and several Anelloviridae and Enteroviridae species (Figure 1C). 
Unsurprisingly, SARS-CoV-2 was the most prevalent virus identified, and was primarily found in 
NS and EA samples, with detection in PBMCs only in 10 participants near time of admission 
(Figure 1C). We confirmed that SARS-CoV-2 abundance measured by RNA-seq reads per 
million (rpM) highly correlated with RT-qPCR cycle threshold (Supplemental Figure S1A-B). 

Among Herpesviridae, HSV1/2, EBV, and CMV transcripts were commonly detected across 
compartments during acute COVID-19 (defined as the first 40 days after hospital admission), 
with a notable lack of detection during the convalescent period (>3 months post admission) 
(Figure 1C). In addition, we also detected a diverse number of Anelloviridae and Enteroviridae 
species (Figure S1C-D), with their collective viral load at the family taxonomic level used for 
analyses. 

Interestingly, we found that each viral species displayed unique temporal dynamics of 
reactivation relative to hospital admission (Figure 1D). For example, EBV reactivated early in 
the disease course, with ~20% of participants having detectable transcripts at the time of 
admission, followed by a gradual decline in detection over time. Unlike EBV, the frequency of 
Anelloviridae transcripts remained constant up to day 20 post-admission, followed by a slow 
decline. In contrast, HSV1/2 and CMV reactivated later in disease, with HSV1 detected in up to 
40% of EA samples and CMV in ~8% of PBMC samples 19-24 days post admission (Figure 1D 
& S1D-E).  

The detection of each virus varied across compartments, with EBV transcripts more common in 
PBMCs and HSV1/2 transcripts notably more common in NS and EA samples. Evaluation of 
viral rpM across nasal, EA and PBMC compartments demonstrated that transcript abundance 
for individual viruses was often correlated across the three compartments (Figure 1E, 
Supplemental Figure S1F).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 16, 2024. ; https://doi.org/10.1101/2024.11.14.622799doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.14.622799
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

5

10

15

20

25

0 10 20 30 40
Days from Hospitalization

Pe
rc

en
t o

f S
am

pl
es

 w
ith

 V
ira

l T
ra

ns
cr

ip
ts

 (%
)

Virus
Anelloviridae

Enteroviridae

Human alphaherpesvirus 1 (HSV1)
Human alphaherpesvirus 2 (HSV2)

Human betaherpesvirus 5 (CMV)
Human gammaherpesvirus 4 (EBV)

Compartment
Nasal
PBMC

970

1020

77

346

316

0

580

637

80

372

406

78

328

331

58

90

108

37

299

299

19

344

332

0

389

365

0

398

366

0EA

Nasal

PBMC

Visit
 1

Visit
 2

Visit
 3

Visit
 4

Visit
 5

Visit
 6

Visit
 7

Visit
 8

Visit
 9

Visit
 10

Inpatient Inpatient & Outpatient Outpatient

Number of Biospecimens

Target Day
Post-Admission 4<2 7 14 21 28 90 180 270 360

PBMCs

Nasal
Swab

Endotracheal
Aspirate

Transcriptomics Across Body Compartments
IMPACC Cohort

n=1154 participants

Hospitalized COVID-19 Patients

D E

A B

C

20 Hospitals

Percent of
Samples

0
20
40
60
80
100

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1EBV.e
a

CMV.e
a

EBV.p
bm
c

EBV.n
as
al

Ane
llo

vir
ida

e.p
bm
c

Ane
llo

vir
ida

e.n
as
al

Ane
llo

vir
ida

e.e
a

Ente
rov

irid
ae
.na
sa
l

HSV2.e
a

HSV1.e
a

HSV2.n
as
al

HSV1.n
as
al

CMV.p
bm
c

CMV.n
as
al

EBV.ea
CMV.ea

EBV.pbmc
EBV.nasal

Anelloviridae.pbmc
Anelloviridae.nasal

Anelloviridae.ea
Enteroviridae.nasal

HSV2.ea
HSV1.ea
HSV2.nasal

HSV1.nasal
CMV.pbmc

CMV.nasal

Spearm
an C

orrelation

0.7 0.2

18.3 21 16 8.8 13 7.4 2.1 1.6 1.4 1.3

1.3 1.1 1.7 4.2 9.3 4.3 0.3

0.3 0.5 0.7 2.4 2.8 0.3

0.1 0.3 0.3

10.5 10.8 13.8 10.6 13.9 6.4 11.1 7.9 9.6 7.9

0.3 0.2 1 0.3 0.3

0.1

93.8 90.2 88.7 82.6 73.3 68.6 0.6 0.8 0.3 0.6

4.3 7.2 11 12.2 16.7 7 0.3 0.3

0.5 0.7 3.5 3 7.8 1 0.3

3.1 4.1 4.3 3 6.7 3.3 0.3 0.3

0.5 0.9 0.8 1.5 7.8 2 0.3 0.3 0.3

0.1

0.3 1.1

2.4 2.4 1.6 1.2 4.4 1.7 0.6 0.5 0.8 0.9

0.6 1 0.8 2.2 0.7 0.3

0.3

2.2 2.4 2.7 3.4 1.3 5.5 4.1 4.3 5.8

87.2 91.4 85.2 75 68.4 57.9

12.8 22.2 21 41.7 47.4 31.6

1.3 3.7 2.5 10 13.2 5.3

1.3 3.7 3.7 3.3 21.1

2.6 2.5 1.2 5 2.6 21.1

2.5 1.7

1.3

2.6 7.4 3.7 2.6 5.3

2.6

PBMC Nasal EA

SARS−CoV−2

Human alphaherpesvirus 1 (HSV1)

Human alphaherpesvirus 2 (HSV2)

Human gammaherpesvirus 4 (EBV)

Human betaherpesvirus 5 (CMV)

Human betaherpesvirus 6

Human betaherpesvirus 7

Human gammaherpesvirus 8

Anelloviridae

Human immunodeficiency virus 1

Respiratory syncytial virus

Enteroviridae

Bas
eli

ne
Day

 4
Day

 7

Day
 14

Day
 21

Day
 28

3 M
on

ths

6 M
on

ths

9 M
on

ths

12
 M

on
ths

Bas
eli

ne
Day

 4
Day

 7

Day
 14

Day
 21

Day
 28

3 M
on

ths

6 M
on

ths

9 M
on

ths

12
 M

on
ths

Bas
eli

ne
Day

 4
Day

 7

Day
 14

Day
 21

Day
 28

Assay

Figure 1 – The Transcriptionally Active Human Virome of the Blood, Upper Airway and Lungs in 
Patients Hospitalized for COVID-19. A) A total of 1154 participants were recruited across 20 sites for the 
IMPACC study, with PBMC, nasal, and EA samples analyzed with RNA-sequencing. B) The number of 
participants with the respective transcriptomic at each timepoint. The background gray shading indicates 
the percentage of total participants, with samples analyzed at that timepoint for each transcriptomic assay. 
C) Heatmap of the percent of samples that had detected reads for various latent viruses for each 
transcriptomic assay at the different timepoints. D) Smoothed curves demonstrating the proportion of total 
samples that were positive for the five most common viruses in the nasal and PBMC transcriptomics. 
Curves were calculated by the proportion of samples positive for each day ± two days (a rolling window 
approach), followed by a local polynomial regression fitting. E) Spearman correlation of viral reads per 
million across transcriptomic assays, with viruses hierarchically clustered. Correlation in (E) only visualized 
if adj.p <= 0.05. Source data are provided as a Source Data file. 
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Activation of the Human Virome is Associated with COVID-19 Clinical Outcomes 

Next, we evaluated how detection of viral transcripts in the first 40 days post hospital admission 
is associated with COVID-19 severity, using the previously published IMPACC trajectory groups 
(TG)31 (Figure 2A, and S2A, and Supplementary Data 1). Cumulative linked modeling of the 
TGs demonstrated significant associations between COVID-19 severity and the detection of 
Herpesviridae and Anelloviridae transcripts (Supplementary Data 1). More specifically, we found 
associations between severity and the detection of transcripts from Anelloviridae (PBMC adj.p = 
2.37E-05), CMV (nasal adj.p = 3.16E-04, PBMC adj.p = 9.91E-04), EBV (nasal adj.p = 7.33E-
06, PBMC adj.p =8.06E-10), HSV1 (nasal adj.p =1.05E-05), and HSV2 (nasal adj.p = 6.61E-04 
transcripts. When further limiting to severely ill TG4 patients (still hospitalized after 28 days), we 
observed that patients with CMV transcripts in any compartment were more likely to die within 
one year (nasal adj.p = 4.79E-03, EA adj.p = 6.66E-03, PBMC adj.p = 6.66E-03). This was also 
the case for patients with detectably expressed EBV transcripts in the upper respiratory tract 
(adj.p = 0.0067), HSV1 (adj.p = 0.0067), or HSV2 (adj.p = 0.0067) (Figure 2A). Of note, there 
was no difference in prevalence of chronic viruses between TG4 and TG5.  

We then evaluated whether the detection of chronically infecting viral transcripts varied with 
age, while adjusting for COVID-19 severity (TGs), and found a significant positive association 
with Anelloviridae transcripts in the PBMCs with increasing age (Figure 2B, adj.p = 0.044, 
Supplementary Data 1). When assessing associations between race or ethnicity, we found that 
Hispanic ethnicity was significantly associated with detection of both CMV (adj.p = 0.03) and 
EBV transcripts (adj.p = 0.03, Figure S2B, Supplementary Data 1). However, we found no 
significant associations between viral transcripts and biological sex, or treatment with either 
remdesivir or steroids (Figure S2C-E). 

To further extend our analysis, we also evaluated the association of viral transcripts with 
comorbidities, medication usage, and complications (Figure 2C, Supplementary Data 1). 
Anelloviridae transcripts in PBMCs were significantly associated with a history of solid organ 
transplantation and immunosuppression, as well as shock and ST-elevation myocardial 
infarction (STEMI). CMV in the nasal compartment was linked to pneumothorax, whereas CMV 
in the PBMCs was associated with bacteremia, pulmonary vascular disease, renal 
complications, shock, and stroke. Interestingly, CMV in the nasal compartment was also 
inversely associated with azithromycin use. EBV transcripts in the nasal compartment were 
primarily associated with ICU-level care and shock, while detection of EBV transcripts in PBMCs 
correlated with liver failure, concurrent infections, shock, and the overall number of 
complications. Also, detection of EBV transcripts in the nasal compartment and the PBMCs was 
associated with a secondary infection besides SARS-CoV-2. Detection of HSV1 in the nasal 
compartment had a significant association with acute venous thromboembolism and shock and 
was inversely associated with liver disease. Similarly, HSV2 reads in the nasal compartment 
were associated with shock and inversely associated with convalescent plasma.  
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Figure 2 – Clinical Outcomes Associated with Activation of the Human Virome in Severe COVID-19. 
A) Percent of participants in the cohort who had detectable viral reads in at least one sample within 40 days 
of hospital admission for the respective virus and tissue split by each trajectory group (on the left), a 
measure of COVID-19 severity, and participants in TG4 split by their long-term mortality outcome (on the 
right). B) Percent of participants in the cohort who had detectable viral reads in at least one sample within 
40 days of hospital admission for the respective virus and tissue across age groups (split by quantiles). In 
(A) and (B) adjusted p-values of <0.05, <0.01, <0.001, and <0.0001 are represented by *, **, ***, and **** 
respectively. C) Results from generalized linear mixed modeling of various complications, comorbidities, 
and medication usage evaluating for association with viral transcripts detected within 40 days of 
hospitalization while controlling for sex, age quantile, and TG. Directionality of the association indicated by 
color, with a positive association increasingly red and a negative association increasingly blue.  (Filled dots 
represent adj.p < 0.05, p-values adjusted using Benjamini-Hochberg procedure). Source data are provided 
as a Source Data file. 
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Viral Reactivation Results in Elevated Antibody Titers and Changes in Immune Cell 
Frequencies  

We next leveraged our multi-omic data to further validate chronic viral reactivation in COVID-19 
and characterize the associated responses of the host’s immune system, incorporating serum 
EBV and CMV antibody levels, immune cell frequencies, serum cytokines, plasma 
metabolomics, and host transcriptomics. 

First, we observed that patients with detectable EBV transcripts in PBMCs had persistently 
elevated EBV IgG and IgA antibody titers (Figure 3A, Supplementary Data 2). Similarly, patients 
with CMV transcripts had significantly higher CMV seropositivity rates at baseline (Figure 3B, 
Supplementary Data 2). Furthermore, using unbiased mass spectrometry proteomics32,33, we 
assessed circulating HSV1 proteins in participant plasma. These proteins were more common in 
participants from whom HSV1 transcripts were identified in nasal swabs (Figure 3C, p=0.02, 
Supplementary Data 2), and significantly more common in TG4 patients with severe COVID-19 
(Figure S3B, p=0.0003, Supplementary Data 2).  

Using mass cytometry by time of flight (CyTOF), we next evaluated relationships between viral 
transcript detection and blood immune cell frequencies. We observed significant associations 
between EBV transcription in PBMCs and increased proportions of B-cell plasmablasts, the 
primary host cells of the virus (Figure 3D, Supplementary Data 2). Furthermore, we observed 
that detection of CMV transcripts was associated with a significant reduction in the frequency of 
CD4 and CD8 central memory T cells, CD27low effector memory CD4 T cells, and CD56low 
CD16hi CD57low NK cells. Interestingly, detectable expression of both EBV and CMV was 
associated with a higher frequency of activated CD4+ and CD8+ T cells.  

To assess whether changes in circulating cell frequencies may explain the association between 
Herpesviridae and Anelloviridae transcripts and COVID-19 severity we repeated our analysis of 
viral transcripts across the TGs while controlling for immune cell frequencies, which vary with 
disease severity34. This analysis demonstrated that even when controlling for changes in these 
underlying cell frequencies, viral transcripts were still significantly associated with increasing 
COVID-19 severity (Figure S3A, Supplementary Data 2). 
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Figure 3 - Antibody Response, Proteomics, and Circulating Cellular Immunophenotyping Validates 
Chronic Viral Reactivation in COVID-19. A) Relative EBV GP350 IgG Antibody Titers in participants with 
detected EBV transcripts (EBV+) vs participants with no detected transcripts (EBV-). Adjusted p-values 
calculated using a Wilcoxon rank-sum test with Benjamini-Hochberg corrections. B) Percent of patients 
seropositive for CMV at admission in participants with no CMV transcripts in the acute period (CMV-) vs 
participants with detectable transcripts (CMV+). C) Percent of participants with detectable HSV1 proteins 
in the plasma for participants with HSV1 detectable in the nasal swabs (HSV1+) vs participants with no 
detectable transcripts (HSV-). P-values in (B) and (C) calculated using a chi-square test of independence. 
D) Results of linear mixed effect modeling identifying whole blood cell frequencies significantly associated 
with detection of viral reads for different viruses while controlling for TG, sex, and age. Directionality of the 
association indicated by color, with a positive association increasingly red and a negative association 
increasingly blue. (Dot only shown if adj.p <= 0.05.). Source data are provided as a Source Data file. 
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Reactivation of the Human Virome Correlates with Changes in Inflammatory Cytokines 
and Chemokines 

Next, we asked whether detection of Herpesviridae and Anelloviridae transcripts was associated 
with changes in inflammatory protein levels. Using generalized additive mixed modeling 
(gamm), we compared the longitudinal dynamics of cytokines in patients with or without 
evidence of viral reactivation, while controlling for COVID-19 severity (TGs), sex, and age 
(Figure 4A, Supplementary Data 3).  

Interestingly, we found reactivation of different chronic viruses associated with several unique 
cytokine, chemokine, and inflammatory soluble protein signatures (Figure 4A and S4). However, 
there was also a set of shared cytokines including CXCL10 (Figure 4B), CXCL11 (Figure 4C), 
and IL18 (Figure 4D) that were correlated with several chronic viruses. 

EBV in the PBMC was associated with elevation of several key cytokines including IL6 (Figure 
4E), CCL7, CCL2, IL10 (Figure 4F), and CXCL10 all of which have been associated with 
COVID-19 severity35–37 (Figure 4A and S4). Interestingly, from the cytokines associated with 
EBV in PBMC, only CXCL10 was also associated with EBV in the nasal transcriptomics. In 
addition, EBV in the nasal compartment was also correlated with increases in IL18, CXCL11, 
CXCL10, CD274, IL18R1, IL15RA, IL22RA1, CCL8, IFNG, HGF, and a decrease in KITLG. 
Thus, these data suggest that the host immune response towards chronic viruses may differ 
between different compartments, with EBV in the nasal compartment possibly reflecting a more 
severe state of EBV viral reactivation. 

Similar to EBV, the other detected herpetic viruses (HSV1 and HSV2 in the nasal and CMV in 
the PBMC transcriptomics) associated with pro-inflammatory serum cytokines, with many in 
common between the viruses. HSV1, HSV2, and CMV were all associated with increases in 
IL18, CXCL11, CXCL10, CD274, and TNF, with HSV1 and CMV also correlated with elevations 
in IL18R1, IL15RA, CDCP1, CD40, CD8A, FGF23. Furthermore, HSV2 was associated with 
increases in CCL8, TGFA, and OSM, HSV1 with elevations of IL22RA1, CCL25, CCL20, CD5, 
SLAMF1, MMP10, and TNFRSF9, and CMV with increases in CCL8, IFNG (Figure 4G), HGF, 
CCL7, CXCL9, CX3CL1, LIFR, ADA1, CXCL8, and decreases in MMP1 and IL4. Finally, 
Anelloviridae were only associated with an increase in CXCL11 and IL18, and a decrease in 
TNFSF11. We also observed compartment-specific differences in the relationship between 
cytokine expression and viral replication. For instance, of the cytokines associated with EBV 
transcripts in PBMCs, only CXCL10 was also associated with EBV in the upper airway. 
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Figure 4 – Activation of the Human Virome Correlates with Changes in Inflammatory Cytokine 
Expression. A) Summary heatmap of adjusted p-values colored by direction of significance for 
associations of cytokines with specific viruses in the upper respiratory tract and blood. Adj.p shown if 
adj.p<0.01 for either the main effect or time interaction term in the model. Boxplot of largest gamm residuals 
for each participant by virus and longitudinal 95% confidence interval for B) CXCL10, C) CXCL11, D) IL18, 
E) IL6, F) IL10, and G) IFNG. Source data are provided as a Source Data file. 
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Reactivation of the Human Virome Correlates with Changes in the Metabolome 

Using the same longitudinal gamm analysis, we evaluated the association of chronic viral 
reactivation with plasma metabolites as measured by liquid chromatography-mass spectrometry 
(Supplementary Data 4). As has been observed with other viral infections38, reactivation was 
associated with changes in metabolites belonging to amino acid and lipid metabolism38 (Figure 
5A and 5B). Of the viruses with detectably expressed transcripts, CMV was associated the 
greatest number of changes in the metabolome, and in particular with higher levels of urea and 
TMAP, metabolites previously linked to kidney injury (Figure 5A, 5C and S5B)39,40. Additionally, 
detection of CMV and Anelloviridae transcripts were both associated with increases in several 
long chain fatty acids such as erucate, arachidate, and docosadienoate (Figure 5D and S5C-D) 
and regulators of nitric oxide synthesis, dimethylarginine (SDMA + ADMA)41–44 (Figure S5E). We 
also identified a shared metabolomic signature common across multiple viruses (Figure S5A). 
For example, both S-methylcysteine sulfoxide and 6-bromotryptophan were reduced with 
reactivation of Anelloviridae, HSV1, HSV2, CMV, and EBV (Figure 5E and S5F).   
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Figure 5 – Viral reactivation associated with shifts in the plasma metabolome. A) Number of significant 
metabolites for each chronically infecting virus across tissues and the percentage of significant metabolites 
that map to each major branch of metabolism. B) Dot plot of metabolic sub-pathways containing significantly 
different metabolites for the different viruses, with dot size indicating the impact ratio (the percent of 
detected metabolites from that pathway that were significantly different) and the color indicating the average 
adjusted p-value of significant metabolites in that pathway. Largest magnitude gamm residual for each 
participant and longitudinal 95% confidence interval for C) urea, D) erucate, and E) 6-bromotryptophan. 
Source data are provided as a Source Data file. 
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Reactivation of Chronic Viruses is Associated with Changes in the Host Transcriptome 

To identify a signature for each chronic virus independent of COVID-19 severity and participant 
demographics, we evaluated nasal and PBMC transcriptomic data for differentially expressed 
host genes while controlling for COVID-19 severity, SARS-CoV-2 nasal viral load, sex, age, and 
days from hospital admission (Supplementary Data 5). 

In the PBMC transcriptomics, detection of viral transcripts in both the PBMC or nasal 
compartments were associated with changes in host PBMC gene expression (Figure 6A and 
S6, Supplementary Data 5). Hypergeometric enrichment analysis demonstrated that 
Anelloviridae in the PBMCs, CMV in the PBMCs, and HSV1/2 in the nasal compartment were all 
associated with downregulation of a diverse number of pathways pertaining to RNA processing 
and protein translation. Similarly, EBV, CMV, HSV1/2 were associated with an upregulation of 
pathways pertaining to cellular replication. In addition to these shared pathways, Anelloviridae in 
the PBMCs, CMV in the PBMCs, and HSV1/2, and CMV in the nasal compartment were also 
strongly associated with signatures of neutrophil degranulation. Finally, EBV in the PBMCs was 
uniquely associated with platelet activation and signaling. 

When evaluating the nasal transcriptomics, viruses that reactivated in the nasal compartment 
(EBV, CMV, and HSV1/2) had the strongest associations with changes in upper airway gene 
expression (Figure 6B and S6, Supplementary Data 5), with inflammatory signaling pathways 
significantly upregulated in patients with reactivation of these viruses. For example, CMV, EBV, 
and HSV1/2 transcripts were all associated with upregulation of interleukin signaling, 
lymphocyte immunoregulatory interactions, and neutrophil degranulation. Of note, interleukin 
signaling included Interleukin-10 signaling, which was elevated in the serum of participants with 
CMV and EBV reactivation. Additionally, CMV and EBV replication in the upper airway was also 
associated with increases in pathways pertaining to a type 2 immune response and 
phagocytosis. Detection of HSV1 or EBV transcripts in the nasal compartment was associated 
with upregulation of methylation, and EBV was specifically associated with increases in 
pathways pertaining to T-cell activation. Finally, Anelloviridae in the PBMCs was also associated 
with changes in the nasal transcriptome, with the strongest associations pertaining to 
upregulation of genes involved in keratinization and downregulation of noncanonical NF-Kb 
signaling. 
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Figure 6 – Chronic Viral Reactivation is Associated with Alterations in Host Gene Expression. A) Top 
enriched pathways in the PBMC transcriptomics associated with reactivation of the identified latently 
infecting viruses. B) Top enriched pathways in the nasal transcriptomics associated with reactivation of the 
identified latently infecting viruses. Results for (A) and (B) calculated using hypergeometric enrichment of 
pathways from Reactome, separately on the positive and negative differentially expressed genes. Dot only 
shown for a pathway if adjusted p-value < 0.01. Source data are provided as a Source Data file. 

Detection of Anelloviridae Transcripts Associates with Physical Disability and Fatigue in 
PASC patients 

Given recent reports linking chronic viral reactivation to PASC22,26,27, we evaluated how viral 
reactivation correlated with our previously identified patient reported outcome (PRO) groups 
using convalescent survey data45. The three PASC groups consisted of physical (characterized 
by physical disability and fatigue), cognitive (characterized by cognitive impairment), and global 
deficits (characterized by both physical and cognitive deficits). These groups were compared to 
a fourth PRO group reporting minimal deficits (minimal). To probe the relationship between 
chronic viral reactivation and PASC PRO groups, we examined whether viral reactivation was 
more prevalent in specific PRO groups during either acute or convalescent stages of COVID-19. 

Upon evaluating the relationship between viral reactivation during the acute stage of COVID-19, 
no significant relationship was found with the PRO groups (Figure 7A, Supplementary Data 6). 
However, due to the association of chronic viruses with mortality and the participant drop-out in 
the convalescent stage, the sample size was limited (Figure S7A, Supplementary Data 6). 
Despite the lack of statistical significance during the acute stage, the relationship between 
specific viruses and PASC trended in the direction of previous reports, with CMV reactivation 
associated with lower rates of PASC 22. 

We then investigated the correlation between viral detection during the convalescent period (> 
60 days post hospitalization) and PRO groups. Interestingly, among the examined viruses, 
Anelloviridae and Enteroviridae were the most frequently detected viruses in RNA-seq of 
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convalescent samples (Figure 1C and 7B, Supplementary Data 6). Notably, we found that 
Anelloviridae transcripts were significantly more prevalent in participants from the Physical PRO 
group (X2 = 9.95, adj.p = 0.038), which was characterized by high scores on the Patient-
Reported Outcomes Measurement Information System (PROMIS) Physical Function survey. 
This finding suggests that detection of Anelloviridae transcripts may serve as a potential 
biomarker for persistent physical disability in PASC patients. We further observed the same 
Anelloviridae gene expression signature during both the acute and convalescent periods (i.e. an 
upregulation of genes involved in neutrophil degranulation and downregulation of genes 
involved in RNA processing, Figure 6A and 7C). 

 

Figure 7 – Associations between Virome Activation and PASC. A) Percent of participants with 
reactivation of chronically infecting viruses across specific compartments (nasal or PBMC) that fall into 
PASC associated patient reported outcome (PRO) groups. The virus negative group are participants who 
had no viral reactivation for any virus in the acute period, whose rate of total PASC is indicated by the gray 
line and serves as the baseline reference.  B) Percent of the PRO groups which had viral transcripts 
detected for Anelloviridae in the PBMCs, or Enteroviridae RNA detected in the upper airway, in any of their 
convalescent samples. Significance calculated using chi-square test, * indicates adjusted p-value < 0.05. 
C) Top hypergeometric enriched pathways (determined via lowest adjusted p-values) from DEGs 
associated with Anelloviridae using convalescent samples reveals a similar signature of Anelloviridae 
during acute COVID-19 (shown in Figure 6A). Source data are provided as a Source Data file. 
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Discussion 

Chronically infecting viruses are prevalent in the general population, with individuals estimated 
to carry an average of 8 to 12 chronic viral infections at any given time2. These viruses are 
generally innocuous and typically do not result in acute infectious symptoms, however, 
emerging evidence suggests that their reactivation is associated with and may contribute to 
multiple diseases, including autoimmune syndromes, malignancies, and chronic fatigue 
syndrome 2,7–13,46. Additionally, Herpesviridae, such as EBV and CMV, have been found to 
reactivate in severe infections and sepsis16,47,48 and have more recently been implicated in the 
pathophysiology of Long COVID/PASC22,26,27. Thus, there is an urgent need to better understand 
how chronically infecting viruses reactivate in COVID-19 and to develop preventative and 
therapeutic strategies to combat their reactivation.  

Here, we conducted a prospective, multi-omic analysis of blood and respiratory samples from 
>1000 hospitalized COVID-19 patients, which revealed widespread reactivation of chronic viral 
infections, specifically from the Herpesviridae and Anelloviridae families. By integrating data 
from multiple platforms, including cellular and cytokine immunophenotyping, metabolomics, and 
transcriptomics, our findings expand on the complex interplay between SARS-CoV-2 infection 
and chronic viral reactivation, and provide a deeper understanding of the host immune 
response. Importantly, our findings demonstrate association of viral co-infections on the clinical 
course of COVID-19 and PASC.  

Despite prior studies evaluating viral reactivation in acute COVID-1920,21,25, the exact timing of 
reactivation for different viruses has not been clearly established. Here, leveraging a large and 
longitudinally sampled cohort, we define timing and duration of viral reactivations. Specifically, 
we found that EBV transcripts in blood peaked early in acute disease following hospital 
admission, and then decreased over time. Similarly, detection of Anelloviridae transcripts from 
blood was most common early during hospitalization and began to decline several weeks later. 
In contrast, CMV, HSV1, and HSV2 displayed later reactivation and were found primarily in 
respiratory samples, peaking at approximately 22 days post hospitalization. Interestingly, 
patients who were EBV transcript positive, in either the nasal or PBMC compartments at 
hospital admission, had higher relative EBV IgG antibody titers, suggesting that EBV 
reactivation may happen prior to hospitalization for some patients. This may also be the case for 
HSV1, HSV2, and CMV as reactivation of these viruses may be present in tissues before they 
become detectable in PBMC or mucosal secretions. These results provide novel insights into 
the dynamics of the diverse virological landscape of COVID-19 and reveal that the time course 
of reactivation varies for different viruses.  

Reactivation of Herpesviridae and Anelloviridae was associated with key clinical outcomes, 
including severe disease and death. CMV reactivation in all tested compartments (upper and 
lower respiratory tract and blood) was associated with increased mortality; while EBV 
reactivation in the nasal compartment and HSV1/2 reactivation in the respiratory compartment 
served as prognostic markers of mortality. Renal complications were more common with CMV 
reactivation, while venous thromboembolism was most associated with HSV1. 
Immunocompromised patients were most likely to experience Anelloviridae reactivation, as 
previously reported49–51. Shock was associated with multiple viral reactivations across 
anatomical compartments including Anelloviridae in PBMCs, CMV and EBV in the upper 
respiratory tract and PBMCs, and HSV1/2 in the upper respiratory tract, while EBV emerged as 
the virus with the most significant association to the overall number of complications. 
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Interestingly, azithromycin, a macrolide antibiotic, known to have antiviral activity52 and that 
exhibits anti-inflammatory effects that could influence microbial infections53,54, was associated 
with a decrease in CMV prevalence in the nasal compartment. These findings collectively raise 
the possibility of a multifaceted role of viral reactivation in the exacerbation of acute COVID-19, 
underscoring the need for integrated viral surveillance across body compartments and 
integration of viral reactivation data into the management of acute COVID-19 patients. 

Regarding demographic features associated with virome reactivation, our findings are in line 
with prior epidemiological studies demonstrating higher rates of reactivation for EBV and CMV 
in individuals of Hispanic/Latino ethnicity55. Detection of Anelloviridae transcripts was 
significantly associated with increasing age, aligning with previous findings of higher 
Anelloviridae viral loads in older adults56. This finding suggests that aside from the risk of more 
severe disease, age on its own may not be a critical factor in herpetic viral reactivations.  

Interestingly, there was a unique signature of cytokines, chemokines, and other inflammatory 
proteins associated with reactivation for the various viruses. For example, CMV reactivation 
correlated with a myriad of proteins, including IL10, CXCL10, CXCL11, sCD40, sPDL1 (CD274), 
and sCD8A. Increases in sCD40, sPDL1, and sCD8A, in conjunction with the increased 
circulating activated CD4+ and CD8+ T-cells during CMV reactivation, suggests that CMV may 
elicit activation of T-cells, as previously reported57.  

Similarly to CMV, EBV was also associated with a significant increase in plasma IL10, as has 
been observed in previous studies58. Increasing serum concentrations of IL10 may stem from 
both viral upregulation of human IL10, coupled with possible displacement of human IL10 from 
IL10R by virally produced IL10 competitive agonists encoded by both CMV and EBV58–60. Other 
than IL10, EBV was also associated with increases in four additional cytokines and chemokines: 
IL6, CXCL10, CCL7, and CCL2. IL6 and CXCL10 have been strongly correlated with COVID-19 
severity 34,36,61,62, and given that EBV reactivation occurs early during acute COVID-19, these 
findings raise the possibility that EBV may play a role in the production of these cytokines in 
critically ill COVID-19 patients. Collectively, these findings suggest that viruses may either 
exploit existing excessive inflammation to reactivate, or magnify production of specific 
inflammatory cytokines, with both mechanisms potentially contributing to acute COVID-19 
severity. 

In addition to perturbations of cytokines, we also observed significant changes in the host 
transcriptome, particularly PBMCs, possibly reflecting responses to viral reactivation. Broadly, 
reactivation of Herpesviridae in the blood was associated with increased expression of genes 
involved in cellular replication, potentially mirroring the expanding lymphocyte response to the 
reactivation. In the nasal compartment, reactivation of Herpesviridae correlated with 
upregulation of localized inflammatory signaling.  
 
We also observed associations between virome reactivation and levels of metabolites. In 
particular, levels of methylcysteine sulfoxide and 6-bromotryptophan, which are involved in 
protection against oxidative stress63,64, were negatively associated with detection of 
Herpesviridae transcripts, suggesting that viral reactivation may contribute to oxidative stress 
and cellular damage. Furthermore, 6-bromotryptophan has previously been associated with 
COVID-19 complications34,65 and impaired kidney function63,66, the persistently low levels of this 
metabolite in the context of viral reactivation could imply additional risk to kidney health, 
compounded by the setting of hospitalization. This finding aligns with the pronounced and 
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sustained elevation of urea and TMAP in CMV-infected patients which is indicative of renal 
impairment and suggests the need for monitoring of CMV reactivation in COVID-19 patients 
presenting with acute kidney damage. Additionally, we observed elevations in long chain fatty 
acids and dimethylarginine with CMV reactivation, which have been previously implicated in 
higher inflammatory states during acute COVID-1941,43 and suggest a potential disturbance in 
endothelial function and systemic inflammation42,44,67. Collectively, these data suggest that viral 
reactivation is associated with specific metabolic perturbations, possibly reflecting strategies by 
these pathogens to manipulate host cell metabolism for their advantage38.  
 
PASC, also known as Long COVID, is a disorder that is characterized by heterogeneous 
symptoms that persist for months to years' post-acute COVID-19 infection, which can 
profoundly impact patients' health and often results in disability and loss of income45,68–70. 
While true prevalence is unknown due to evolving definition of PASC and variability of study 
design across studies, it is estimated to be ~10% or higher in patients post COVID-1971–73. 
Given the high prevalence and lack of treatments for PASC, there is an urgent need for a 
better understanding of the underlying PASC pathophysiology to guide the development of 
novel therapeutics. One of the leading emerging factors associated with PASC is chronic viral 
reactivation, particularly reactivation of EBV, for which PASC patients with neurocognitive 
symptoms have elevated antibody titers22.  
 
In this study, we demonstrate that EBV reactivation is extensive in severe acute COVID-19 
and establish the timing of EBV reactivation relative to SARS-CoV-2 infection and 
hospitalization. Although we did not find a direct association of EBV transcripts in the acute 
phase of COVID-19 with convalescent deficits, we observed a trend towards higher rates of 
PASC in participants with EBV reactivation and a trend toward lower rates in those with CMV 
reactivation, consistent with prior published reports which highlight the potential role of EBV 
reactivation in the development of PASC22,26. Of note, the PROs in this study were designed 
early in the pandemic prior to emergence of PASC, and thus may not fully capture PASC 
phenotypes, which may have limited our ability to detect association between EBV viral 
reactivation and PASC in our dataset. Furthermore, prior reports connecting EBV with PASC 
have focused strictly on EBV antibody titers, which was collected only at hospital admission 
for half our cohort (n=479). Thus, future work delving into the dynamics of antibody titers 
compared to viral transcription and reactivation may continue to elucidate EBV’s role in 
PASC.  
 
Nonetheless, we report a novel significant association between the PASC Physical PRO group 
and detection of Anelloviridae transcripts in the convalescent period. Anelloviridae are a large 
family of negative-sense DNA stranded viruses, with some members of this family (e.g. Torque 
teno virus) found in ~80-90% of the population74,75. Interestingly, Anelloviridae have been 
previously linked with chronic conditions, such as chronic fatigue syndrome and multiple 
sclerosis76–78.These conditions often present with physical symptoms similar to those reported 
by PASC patients, including fatigue, cognitive dysfunction, and post- exertional malaise. Thus, 
our findings suggest that detection of Anelloviridae transcripts may serve as a biomarker of 
persistent physical symptoms among PASC patients. Our data highlights the need for future 
research to dissect the role of viral reactivation, particularly of Anelloviridae, in the development 
and persistence of PASC, as well as to explore potential therapeutic interventions targeting this 
virus family in PASC patients. 
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Strengths of our study include a large multicenter prospective cohort, diverse bioassays 
enabling comprehensive immunophenotyping, detailed clinical phenotyping, and the use of RNA 
sequencing to measure actively replicating viruses. However, there were also several limitations 
to our study. First, the usage of transcripts to identify viral loads is seldom performed when 
compared to common clinical RT-qPCR tests. However, the extensive sequencing depth of our 
samples (targeted read depth 50,000,000 reads) provided sufficient depth to identify viral reads. 
Additionally, we had only six collection timepoints during the acute stage of disease, limiting the 
ability to absolutely rule out that participants did not have viral reactivation that might have 
occurred between collection timepoints. However, using the samples from >1000 participants 
and the fact that the exact date of samples varied from participant to participant due to the 
nature of observation and voluntary human studies, we calculated the overall global trends of 
reactivation over time. Another limitation was substantial participant drop out during the 
convalescent stage of the study, particularly in patients who had acute viral reactivation, 
particularly with EBV, limiting the power of analyses testing the association of acute viral 
reactivation with PASC. Lastly, IMPACC patients were unvaccinated and primarily exposed to 
ancestral strains of SARS-CoV-2, and thus further studies are needed to ascertain effects of 
more recent SARS-CoV-2 strains on viral reactivation in acute COVID-19 and PASC in 
population with hybrid immunity.  

Conclusion 

In this study, we integrated clinical, immunologic, virologic, and multi-omic data from cellular and 
cytokine immunophenotyping, metabolomics, proteomics, and transcriptomics in a longitudinal 
cohort of >1000 COVID-19 patients to investigate for reactivation of chronic viral infections and 
their association with clinical outcomes in one of the largest studies to date. We found that 
multiple chronic viruses reactivate during acute COVID-19 infection, particularly from the 
Herpesviridae and Anelloviridae families. Furthermore, we delineate the temporal dynamics of 
reactivation for various viruses and report their associations with the host immune response, 
molecular pathways, as well as acute and chronic clinical sequelae of COVID-19. Notably, our 
results raise the possibility that viral reactivation may contribute to the development of PASC. 
This finding underscores the pressing need to address chronic viral reactivation in the 
evaluation and management of acute COVID-19 and PASC.  

Methods 

Study Design and Participant Recruitment 

IMPACC is a prospective longitudinal study that enrolled >1,000 hospitalized COVID-19 
patients, as previously described34,45,62,79–81. Participants 18 years and older were recruited from 
20 hospitals across 15 academic institutes within the United States (Figure 1A). All participants 
were confirmed to be SARS-CoV-2 positive by reverse transcription PCR (RT-PCR) testing and 
no participants were vaccinated for SARS-CoV-2 at time of enrollment. Nasal swabs, blood, and 
endotracheal aspirate (for ventilated patients) were collected within 72 hours of hospital 
admission (visit 1) and on days 4, 7, 14, 21, and 28 post hospital admission in addition to 
convalescent samples at 3, 6, 9, and 12 months. Participants were characterized into one of five 
trajectory groups (TGs) based on latent mixed class modeling of a 7-point ordinal scale that 
characterized degree of respiratory illness and reflected acute COVID-19 severity31. 
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The Department of Health and Human Services Office for Human Research Protections 
(OHRP) and NIAID concurred that the IMPACC study qualified for public health surveillance 
exemption. The study protocol was sent for review to each site’s institutional review board (IRB), 
with twelve sites conducting as a public health surveillance study, and three sites integrating the 
IMPACC study into IRB-approved protocols (The University of Texas at Austin, IRB 2020-04-
0117; University of California San Francisco, IRB 20-30497; Case Western Reserve University, 
IRB STUDY20200573) with participants providing informed consent. Participants enrolled at 
sites operating as a public health surveillance study were provided information sheets 
describing the study including the samples to be collected and plans for analysis and data de-
identification. Participants who requested not to participate after review of the study plan and 
information were not enrolled. Participants were not compensated while hospitalized but were 
subsequently compensated for outpatient visits and surveys. This study was registered at 
clinicaltrials.gov (NCT0438777) and followed the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) guidelines. 

Sample Processing and Assays 

Samples were processed as previously described34,45,62,79–81, with the sample protocol 
extensively documented in the IMPACC study design and protocol paper79. Briefly, 10 mL of 
blood and nasal swabs were collected at each visit, with blood processed within 6 hours of 
collection. Blood was collected in both a 2.5 mL Greiner Vacuette CAT Serum Separating 
Tube (SST) (Cat: 454243P) for serum and a 7.5 mL Sarstedt Venous blood collection 
monovette EDTA (Cat: NC9453456) for whole blood, PBMCs, and plasma. The SST was kept 
vertical at room temperature (RT) for at least 30 minutes before centrifuging at RT for 10 
minutes at 1000g. Serum was then aliquoted at 100 μL for downstream assays. 
 
From the EDTA tube, it was briefly inverted to mix before aliquoting 270 uL of whole blood 
twice for both Cytometry Time of Flight (CyTOF) and genome wide association sequencing 
(GWAS) which was stored at –80C until shipment to their respective processing core. The 
remaining blood was centrifuged at RT for 10 minutes at 1000g before aliquoting and storing 
500 uL of plasma at –80C for proteomic and metabolomics. PBMCs were then isolated from 
the remaining sample using the SepMate and Lymphoprep system (StemCell) following 
manufacturer protocol and as previously described79. PBMCs were then stored at 2.5 x 105 

cells in 200 μL of RLT Buffer (Qiagen) and beta-mercaptoethanol at –80C. 
 
Interior nasal turbinate swabs (herein referred to as nasal swabs) were collected and stored 
in 1 mL of Zymo-DNA/RNA shield reagent (Zymo Research), before RNA was extracted twice 
in parallel from 250 μL of sample and purified with the KingFisher Flex sample purification 
system (ThermoFisher) and the quick DNA-RNA MagBead kit (Zymo Research). The 
duplicated RNA was pooled and aliquoted at 20 μL for the downstream assays (SARS-CoV-2 
RT-qPCR and RNA-sequencing). 
 
When participants were ventilated, an endotracheal aspirate (EA) was also collected in a 40 
cc Argyle specimen trap and was processed within 2 hours of collection. First, 500 uL of 1:1 
diluted EA with Maxpar PBS (Ca+2 -Mg+2 free) was mixed with 500 uL of DNA/RNA shield in 
a Zymo tube with lysis beads and subsequently stored at –80C for bulk RNA-sequencing.  
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Collected samples were then shipped and processed for nasal, PBMC, and EA RNA-
sequencing, plasma proteomics, serum cytokine proximity extension assay (PEA), serum 
EBV and CMV antibody titers, whole blood CyTOF, and plasma metabolomics at their 
respective processing cores as previously described34,45,62,79–81. Each assay is described 
briefly below with additional technical details in the prior publications34,45,62,79–81.   
 

• PBMC, EA, and Nasal RNA-seq were sequenced on a NovaSeq 6000 (Illumina) at 100 
bp paired-end read length, and data was aligned using STAR (v2.4.2a or v2.4.3) against 
the GRCh38 reference genome. Gene counts were generated using HTSeq-count 
(v0.4.1). 

• Nasal SARS-CoV-2 viral load was also measured by nasal swab RT-qPCR conducted 
using two separate sets of primers and probes for the N1 and N2 genes. 

• Whole Blood CyTOF used a panel of 43 antibodies to quantify the frequency of 65 cell 
subsets using a Fluidigm Helios mass cytometer, with a semi-automatic gating strategy 
used for cell type assignment. 

• Serum anti-viral antibodies for EBV and CMV were measured via a Luminex platform 
and were normalized to Assay Chex control beads by Radix BioSolutions with batch 
regressed as previously described80. This assay was only performed for half of the 
cohort (n=479). 

• Plasma proteomics was evaluated with a EVOSEP one liquid chromatography 
connected to a TIMSTOF Pro (Bruker) as previously described32,33. 

• Plasma metabolomics were measured using liquid chromatography-mass spectrometry 
and was conducted by Metabolon using in-house standards34,82,83. 

• Serum cytokines and chemokines were measured using O-Link's multiplex PEA for 92 
proteins known to be involved in human inflammation (Olink Bioscience, Uppsala, 
Sweden). 
 

Of note and unique to this IMPACC manuscript, taxonomic alignments for human infecting 
viruses from the PBMC, Nasal, and EA RNA-seq data was obtained from CZID84, which 
removes host reads before aligning remaining reads against the National Center for 
Biotechnology Information (NCBI) nucleotide and non-redundant databases. A sample was 
considered “positive” for a virus if it had at least one read that mapped to both the nucleotide 
and non-redundant database. No water control samples from any of the RNA-sequencing had 
any reads for the human-infecting viruses evaluated in this manuscript, supporting this low 
threshold for positivity. 

Statistics 

All analyses were executed in R v4.0.3. All p-values calculated in this manuscript were adjusted 
using the Benjamini-Hochberg procedure where appropriate and are indicated by “adj.p” or 
“adjusted p-value" (circumstances where no adjustments were necessary will instead report “p” 
or “p-value”). 

Clinical Features and Demographics 

For testing the association of detection of chronic viral transcripts with TGs and age, we used 
cumulative linked mixed modeling from the ordinal (v 2019.12-10) R package. Due to both 
COVID-19 severity and age quantiles being ordinal, cumulative linked mixed modeling allowed 
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for this ordinal relationship to be accounted for in addition to including enrollment site as a 
random effect. In the age quantile ordinal model, trajectory groups were also used as a main 
effect to control for COVID-19 severity. 

Trajectory_group ~ virus_status, random = enrollment_site 

Admit_age_quintile ~ virus_status + trajectory_group, random = enrollment_site 

For association testing of specific clinical complications, comorbidities, medication, and other 
clinical outcomes, linear mixed effect modeling from the lme4 R package (v1.1-28) was used 
with viral status, sex, admit_age_quintile, and trajectory group as main effects and enrollment 
site as a random effect. 

Clinical_feature ~ virus_status + sex + admit_age_quintile + trajectory_group + (1 | 
enrollment_site) 

Serum Cytokines and Plasma Metabolomics 

To evaluate both the serum PEA cytokine assay and the plasma metabolomics, generalized 
additive mixed modeling (gamm) from the gamm4 (v 0.2-6) R package was used to evaluate for 
differences in individual analytes between patients who had detected transcripts for a chronic 
virus compared to patients who never had human-infecting viral transcripts detected (other than 
for SARS-CoV-2). Analytes were modeled against days from admission using cubic regression 
splines with interactions of both status for a given chronic virus (binary: positive or negative 
based on detected transcripts at any collected timepoint) and TG in addition to fixed effects of 
status for the chronic virus being evaluated, TG, sex, age at time of admission sorted into 
quintiles, and SARS-CoV-2 nasal viral RPM at the time of that sample. As chronic viral status is 
both a main effect and interaction term in the model, we used a lower adjusted p-value cutoff of 
0.01 to account for the fact that a feature was significant if either term was significant. 

Analyte ~ s(days, bs = ‘cr’) + s(days, bs = ‘cr’, by = ‘virus_status’) + s(days, bs = ‘cr’, by = 
‘trajectory_group’) + virus_status + sex + trajectory_group + admit_age_quintile + 
sarscovs2_nasal_log_rpm, random = ~(1|enrollment_site/participant_id) 

Nasal and PBMC RNA-Sequencing 

To analyze the signature of host gene expression associated with chronic viruses, the limma (v 
3.46.0) R package was used for both the nasal and PBMC RNA-sequencing to evaluate 
differential expressed genes associated with participants who had detectable chronic viral 
transcripts.  

~ admit_age_quintile + sex + visit_number + trajectory_group + sarscov2_nasal_log_rpm + 
virus_status 

Pathway enrichment on both the upregulated and downregulated differentially expressed genes 
was conducted using hypergeometric enrichment testing from the R package clusterProfiler 
(v3.18.1) with the Reactome pathway database. 

Data and code availability 

Data used in this study is available at ImmPort Shared Data under the accession number 
SDY1760 and in the NLM’s Database of Genotypes and Phenotypes (dbGaP) under the 
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accession number phs002686.v2.p2. All code is deposited on Bitbucket 
(https://bitbucket.org/kleinstein/impacc-public-code/src/master/chronic_viruses_manuscript/). 
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